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ABSTRACT

The primary goal of this research is to model and develop efficient solution

techniques for graph theoretical problems with topologically stochastic information

that manifests in a various forms. We employ a stochastic programming framework

that is based on a formalism of coherent risk measures in order to find minimum-risk

graph structures with stochastic vertex weights. Namely, we propose a class of risk-

averse maximum weighted subgraph problems that represent a stochastic extension

of the so-called maximum weight subgraph problems considered in graph-theoretical

literature.

The structural nature of these model poses a twofold challenge in develop-

ing efficient solution algorithms. First, accurate quantification of uncertainties in

mathematical programming via risk measures in the form of convex constraints typi-

cally requires very large representative scenario sets, thus incurring lengthy solution

times. In this regard, we first introduce an efficient algorithms for solving large-scale

stochastic optimization problems involving measures of risk that are based on cer-

tainty equivalents. The second major challenge relates to the fact that problems of

finding a maximum vertex subset of a defined property within a network are generally

not solvable in polynomial time. Nevertheless, much emphasis has been placed on

developing efficient combinatorial solution methodologies that exploit the structural

nature of the sought subgraphs. In pursuance of analogous frameworks, we propose a

graph-based branch-and-bound algorithm for solving models in the risk-averse maxi-

iii
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mum weighted subgraph problem class that is generally applicable to problems where

a subgraph’s weight is given by a super-additive function whose evaluation requires

solving an optimization problem. As an illustrative example of the developed con-

cepts, we consider risk-averse maximum weighted clique and k-club problems.

The mentioned network studies address problems with topologically exogenous

information in the form uncertainties induced by stochastic factors associated with

vertices. This assumption clearly relies on the premise that the network is structurally

unvarying. For many application, however, it may also be of interest to examine

decision making under conditions that admit topological changes of the network itself.

To this end, we consider a two-stage stochastic recourse maximum graph problem

that seeks to maximize the expected size of a subset of vertices over the decision time

horizon. Namely, a subset conforming to a predefined structural property is select in

the first stage, after which realizations of uncertainty in the form of edge failures and

creations arise. Then, a second stage recourse is taken to “repair” the subset selected

in the first stage by adding or removing vertices in order to ascertain its the defined

property. An exact graph-based branch-and-bound solution criteria is proposed for

instances where the sought subsets represent complete graphs.

Numerical experiments for the above studies demonstrating the underlying

problem properties and improvements in computational time achieved by the devel-

oped algorithms are conducted.

iv
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1

CHAPTER 1
RISK AVERSE DECISION MAKING UNDER UNCERTAINTY

1.1 Introduction

Classical methods for measuring “risk” in decision making problems under un-

certainty were mostly application-driven, or ad-hoc. While such an approach admits

quantification of risk preferences as necessitated by application specific requirements,

it may lead to situations where the constructed risk measure lacks properties that

are generally necessary for adequate risk management. A notorious example of this

kind is served by a metric that is known in financial literature as the Value-at-Risk

(VaR) measure, which is widely considered as a de-facto standard for measuring risk

in the banking industry. Mathematically, VaR is defined as the α-quantile of the loss

distribution at a confidence level α ∈ (0, 1):

VaRα(X) = inf{η | P[X ≤ η] ≥ α}, (1.1)

and is generally non-convex in random outcome X, thereby not admitting proper

reduction of risk via diversification which constitutes a fundamental principle in risk

management practice.

Owing to a large degree to the failings of VaR, recent advances in risk theory

pioneered by Artzner et al. [4] and Delbaen [18] spawned an axiomatic approach to the

construction of risk measures by postulating desirable properties that a “good” risk

measures should possess. Below we discuss the definitions of coherent and convex risk

measures and describe their representation in context of mathematical programming
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models.

1.2 Coherent and convex measures of risk

In this section we present a class of risk measures that encompass many popular

instances in risk management literature. A risk measure ρ(X) over a random outcome

X from probability space (Ω,F ,P) is generally defined as a mapping ρ : X 7→ R, where

X is the space of bounded F - measurable functions X : Ω 7→ R. In what follows, it is

assumed that X represents a cost or a loss, whereby larger realizations are considered

to induce higher risk levels. To be of practical use, however, the current definition

of risk measure ρ is normally augmented using additional properties that makes its

utilization meaningful in a specific application.

Artzner et al. [4] and Delbaen [18] proposed the following four axioms as the

desirable characteristics that a coherent risk measure should possess:

(A0) regularity: ρ is proper and lower semicontinuous (l.s.c.) on X

(A1) monotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ X such that X ≤ Y

(A2) subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X, Y ∈ X

(A3) positive homogeneity: ρ(λX) = λρ(X) for all X ∈ X and λ > 0

(A4) translation invariance: ρ(X + a) = ρ(X) + a for all X ∈ X and a ∈ R

An intuitive interpretation of the above axioms is as follows. Axiom (A1) guarantees

that lower losses yield lower risk. The sub-additivity axiom (A2) is important in the

context of risk reduction via diversification. It is also of fundamental significance

from the optimization viewpoint, since together with the positive homogeneity axiom
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(A3), it yields the all-important convexity property:

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all X, Y ∈ X , λ ∈ [0, 1]

The positive homogeneity property (A3) postulates that losses and risk scale corre-

spondingly. Axiom (A4) allows for eliminating risk of an uncertain loss profile X by

adding a deterministic hedge, ρ(X − ρ(X)) = 0.

Since being proposed in [4, 18], the axiomatic approach to defining risk mea-

sures has been widely adopted in recent literature, and a number of risk functionals

tailored to specific preferences emerged thereafter (see, e.g., [28, 54]). In particular,

it was argued that the positive homogeneity property (A3) may be omitted in many

situations; the corresponding risk measures that satisfy (A1), (A2), and (A4) are

called convex measures of risk [46].

Observe that the above axiomatic framework of risk measures is not construc-

tive in the sense that it does not provide a functional form of coherent/convex risk

measures. Moreover, the ability to employ them in an optimization context heavily

depends on the availability of a functional representation, typically in the formalism

of convex analysis, that is conducive to implementation in a mathematical program-

ming models. Our interest in these two classes of risk measures stems from the

following infimal convolution representation that facilitates their use in mathematical

programming problems.

Theorem 1.1. [26, 59] Function ρ(X) is a proper coherent (resp., convex) measure

of risk if and only if it can be represented by the following infimal convolution of a
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lower semicontinuous function φ : X 7→ R such that φ(η) > η for all real η 6= 0, and

which satisfies (A1)–(A3) (resp., (A1)–(A2)):

ρ(X) = inf
η

η + φ(X − η). (1.2)

Moreover, the infimum in (1.2) is attained for all X, so infη may be replaced by

minη∈R.

Representation (1.2) can be used for construction of coherent (convex) risk

measures through an appropriate choice of function φ. The present work pertains

to a special form of φ(X) in (1.1) that can be derived from considerations involving

utility functions and certainty equivalents. In fact, much emphasis has been placed

on developing risk-based decision making models that conform to the notions defined

by the utility theory of von Neumann and Morgenstern [60]. Namely, if a decision

makers preferences “�” among outcomes (e.g. if outcome X is preferred to Y , then

X � Y ) are satisfied by a system of axioms (completeness, transitivity, continuity,

independence), then there exists a utility function u : R → R such that E[u(X)] ≥

E[u(Y )] for X � Y . A decision-maker’s preferences are said to be risk averse if

function u is non-decreasing and concave, which can be extended to postulate the

concept of second-order stochastic dominance (SSD) if the same a relationship hold

true for all such functions u. Namely, a random outcome X is said to dominate

outcome Y by the second order stochastic dominance if

∫ t

−∞
FX(t)dt ≤

∫ t

−∞
FY (t)dt for all t ∈ R.
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Due to the fact that coherent risk measures generally do not comply with SSD, a

framework that is consistent with this property is of interest. By means of imposing

SSD consistency to risk measure ρ(X), Krokhmal [26] showed that an analog of (1.2)

can be constructed by replacing axiom (A1) with

(A1’) SSD isotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ X such that (−X) �SSD (−Y ),

where the resulting risk measure obtained from solving the optimization problem in

the following theorem is both coherent and SSD compliant.

Theorem 1.2. [26] Let function ρ(X) satisfy axioms (A1’),(A2), and (A3), and be

a l.s.c. function such that φ(η) > η for all real η 6= 0. Then the optimal solution

value of stochastic programming problem

ρ(X) = inf
η

η + φ(X − η) (1.3)

exists and is a proper function that satisfies (A1’),(A2), (A3), and (A4).

Let v(·) be the deutility function that quantifies dissatisfaction with loss X

(if −X can be regarded as payoff or reward and u(·) is Bernoulli utility function,

then v(t) = −u(−t)). Expression CE(X) = v−1
(
Ev(X)

)
represents the certainty

equivalent (CE) of loss X, i.e., such a deterministic loss that a rational decision

maker with deutility function v (or, equivalently, utility function u(t) = −v(−t))

would be indifferent between stochastic loss profile X and CE(X). Then, by taking

φ(X) = (1− α)−1CE(X), we obtain the following expression for (1.2):

ρ(X) = min
η

η +
1

1− α
v−1
(
Ev(X − η)

)
. (1.4)
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Expression (1.4) admits a two-stage decision process interpretation. Faced with a

future uncertain loss X, assume that the decision-maker can allocate amount η of

resources to cover this loss (i.e., take a deterministic loss η) now, and then deal with

an uncertain loss X−η. In this sense, (1.4) is a problem of minimization of resources

required to cover loss X, where 1/(1 − α) > 1 is a penalty factor (see a detailed

discussion of representation (1.4) and related aspects in [58]).

The conditions on v that guarantee convexity of CE(X) = v−1
(
Ev(X)

)
, and

correspondingly of φ(X), can be found in [11]. Namely, v should be thrice contin-

uously differentiable and v′(t)/v′′(t) be convex. In what follows, however, we im-

plicitly assume convexity of the certainty equivalent. Particularly, function v(t) is

continuously differentiable, increasing, convex, and, moreover, the certainty equiva-

lent v−1
(
Ev(X)

)
is convex in X.

Several practically interesting risk measure families can be obtained from (1.4)

if one requires that v(t) = 0 for t ≤ 0 (i.e., dissatisfaction vanishes for negative losses).

To highlight this fact, we rewrite (1.4) as

ρ(X) = min
η

η +
1

1− α
v−1Ev (X − η)+ , (1.5)

where X+ = max{0, X} and we adopt an operator-like notation for v and v−1, e.g.,

v(X−η)+ ≡ v
(
(X−η)+

)
. Note that in conjunction with the properties of v−1, it sig-

nifies that φ(X) = (1−α)−1v−1Ev(X) in (1.5) satisfies the conditions of Theorem 1.1.

Then, the following risk measures can be obtained from representation (1.5):

(i) If v(t) = t, then (1.5) defines the well-known Conditional Value-at-Risk measure

(CVaR) [44, 45]:
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CVaRα(X) = min
η

η + (1− α)−1E(X − η)+ (1.6)

(ii) If v(t) = tp for t ≥ 0 and p > 1, then representation (1.5) yields a two-parametric

family of higher-moment coherent risk measures (HMCR) [26]:

HMCRp,α(X) = min
η

η + (1− α)−1
∥∥(X − η)+

∥∥
p

(1.7)

(iii) If v(t) = λt − 1, λ > 1, then one obtains the family of log-exponential convex

measures of risk (LogExpCR) [57]:

LogExpCRλ,α(X) = min
η

η + (1− α)−1 logλ Eλ
(X−η)+ (1.8)

Unlike the CVaR and HMCR measures that are coherent, the LogExpCR mea-

sure is convex but not coherent as it does not satisfy the positive homogeneity

axiom (A3).

A common property of measures (i)–(iii) is that they are “tail” risk measures

in the sense that they quantify losses in the tail {X : X ≥ η∗α(X)} of the loss

distribution, where the location of the “tail cutoff” point η∗α(X), which is a minimizer

in (1.5), is governed by the value of the parameter α (see [26, 59]):

lim
α→1

η∗α(X) = ess supX.

Perhaps one of the most widely used coherent measures of risk is defined by

(i), which represents, roughly speaking, the conditional expectation of losses that may

occur in the (1−α)·100% of worst realizations of X. Notice that the CVaR measure is
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a special case of representation (ii) when p = 1, HMCR1,α(X) = CVaRα(X). When p >

1, HMCR measures quantify losses via higher tail moments ‖(X − η)+‖p. These have

been shown to be better suited for applications under the presence of “heavy tailed”

loss distributions [26]. Likewise, the log-exponential family of convex measures of risk

is designed for dealing with heavy-tailed loss distributions, and particularly extreme

and catastrophic losses. Another interesting common property of risk measures (i)–

(iii) is represented by the second order stochastic dominance isotonicity axiom (A1’).

Recall that payoff profile X dominates Y with respect to SSD if the relation E[u(X)] ≥

E[u(Y )] holds for all non-decreasing concave utility functions u, or, in other words,

if every rational risk-averse decision maker prefers X over Y . It is important to note

that coherent (convex) measures of risk are generally not SSD-isotonic [28].

Below we discuss the implementation of the described risk measures in math-

ematical programming models.

1.2.1 Implementation in stochastic programming

Assume that loss X is a function of the decision variable x, X = X(x, ω),

where event ω ∈ Ω. Then, for a compact and convex feasible set C ⊂ Rn, consider a

stochastic programming problem with a risk constraint in the form

min
{
g(x) : ρ

(
X(x, ω)

)
≤ h(x), x ∈ C

}
. (1.9)

Theorem 1.3. Consider problem (1.9) where set C ⊂ Rn is compact and convex,

and functions g(x) and h(x) are convex and concave on C, respectively. If, further,

the cost or loss function X(x, ω) is convex in x, and ρ is a coherent or convex measure
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of risk possessing representation (1.2), then problem (1.9) is equivalent to

min
{
g(x) : η + φ

(
X(x, ω)− η

)
≤ h(x), (x, η) ∈ C × R

}
, (1.10)

in the sense that (1.9) and (1.10) achieve minima at the same values of the decision

variable x and their optimal objective values coincide. Further, if the risk constraint

in (1.9) is binding at optimality, (x∗, η∗) achieves the minimum of (1.10) if and only

if x∗ is an optimal solution of (1.9) and

η∗ ∈ arg minη η + φ
(
X(x∗, ω)− η

)
.

Proof. See [26].

Remark. Note that risk minimization problem

min
{
ρ
(
X(x, ω)

)
: x ∈ C

}
(1.11)

is obtained from (1.9) by introduction of dummy variable xn+1 and letting g(x) =

h(x) = xn+1.

Let function φ in (1.10) have the form

φ(X) = (1− α)−1v−1Ev(X+).

Given a discrete set of scenarios {ω1, . . . , ωN} = Ω that induce outcomes X(x, ω1), . . . ,

X(x, ωN) in decision vector x, it is easy to see that the risk constraint in (1.10) can
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be represented via the following set of inequalities:

η + (1− α)−1w0 ≤ h(x) (1.12a)

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
(1.12b)

wj ≥ X(x, ωj)− η, j ∈ N (1.12c)

wj ≥ 0, j ∈ N , (1.12d)

where N denotes the set of scenario indices, N = {1, . . . , N}, and corresponding

scenario probabilities are represented as P(ωj) = πj > 0, such that π1 + · · ·+πN = 1.

In the above discussion it was shown that several risk measure types emerge

from different choices of the deutility function v. Here we note that the correspond-

ing representations of constraint (1.12b) in context of HMCR and LogExpCR mea-

sures lead to sufficiently “nice”, i.e., convex, mathematical programming models. For

HMCR measures inequality (1.12b) becomes

w0 ≥
(∑
j∈N

πjw
p
j

)1/p

, (1.13)

which is equivalent to a standard p-order cone under affine scaling. Noteworthy

instances of (1.13) for which readily available mathematical programming solution

methods exist include p = 1, 2. In the particular case when p = 1 (which corre-

sponds to CVaR), the problem reduces to a linear programming (LP) model. For

instances when p = 2, a second-order cone programming (SOCP) model transpires

that is efficiently solvable using long-step self-dual interior point methods. However,

no similarly efficient solution methods exist for solving p-order conic constrained prob-

lems when p ∈ (1, 2) ∪ (2,∞) due to the fact that the p-cone is not self-dual in this
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case. Additional mathematical programming considerations for such instances will

be discussed in Chapter 2. Lastly, the following exponential inequality corresponds

to constraint (1.12b) when ρ is a LogExpCR measure:

w0 ≥ ln
∑
j∈N

πje
wj , (1.14)

which is also convex and allows for the resulting optimization problem be solved using

appropriate (e.g., interior point) methods.
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CHAPTER 2
A SCENARIO DECOMPOSITION APPROACH FOR STOCHASTIC

OPTIMIZATION PROBLEMS WITH A CLASS OF DOWNSIDE RISK
MEASURES

2.1 Introduction

Quantification of uncertainties and risk via axiomatically defined statistical

functionals, such as the coherent measures of risk, has become a widely accepted

practice in stochastic optimization and decision making under uncertainty [28, 54].

Many of such risk measures admit effective utilization in “scenario-based” formula-

tions of stochastic programming models, i.e., the stochastic optimization problems

where the random parameters are assumed to have known distribution over a finite

support that is commonly called the scenario set. A typical instance of such a problem

can be written as

min
x∈C

ρ(X(x, ω)), (2.1)

where risk measure ρ, loss X(x, ω) and decision vector x ∈ C ⊂ Rn are defined as

previously. In many practical applications accurate approximations of uncertainties

may, however, require very large scenario sets (N � 1), thus potentially leading to

substantial computational difficulties.

In this study, we propose an efficient algorithm for solving large-scale stochas-

tic optimization problems involving the risk measures described in Chapter 1. The

forthcoming scenario decomposition algorithm exploits the special structure of the

feasible set induced by the respective risk measures as well as the properties common
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to the considered class of risk functionals. As an illustrative example of the general

approach, we consider stochastic optimization problems with HMCRs and also apply

the proposed method to solve problems with LogExpCR measures.

Perhaps, the most frequently implemented risk measure in problems of type

(2.1) is the well known CVaR [44, 45] defined by (1.6). When X is piece-wise linear in

x and set C is polyhedral, problem (2.1) with CVaR objective or constraints reduces

to a LP problem. Several recent studies addressed solution efficiency of LPs with

CVaR objectives or constraints in the case when the number of scenarios is large.

Lim et al. [34] noted that (2.1) in this case may be viewed as a nondifferentiable

optimization problem and implemented a two-phase solution approach to solve large-

scale instances. In the first phase, they exploit descent-based optimization techniques

by circumventing nondifferentiable points by perturbing the solution to differentiable

solutions in the “relative” neighborhood. A second phase employs a deflecting sub-

gradient search direction with a step size established by an adequate target value.

They further extend this approach by implementing a third phase, resorting to the

simplex algorithm after achieving convergence by employing an advanced crash-basis

dependent on solutions obtained from the first two phases.

Künzi and Máyer [33] developed a solution technique for problem (2.1) with

measure ρ chosen as CVaR that utilized a specialized L-shaped method by reformu-

lating it as a two-stage recourse stochastic optimization problem. However, Subrama-

nian and Huang noted in [49] that the problem structure does not naturally conform

to the characteristics of a two-stage stochastic program and introduced a polyhe-



www.manaraa.com

14

dral reformulation of the CVaR constraint with a statistics based CVaR estimator to

solve a closely related version. In a followup study [50], they retained Value-at-Risk

(VaR) and CVaR as unknown variables in the CVaR constraints, enabling a more

efficient decomposition algorithm, as opposed to [24], where the problem was solved

as a canonical integrated chance constraint problem with preceding estimates of VaR.

Espinoza and Moreno [20] proposed a different solution method for problems (2.1)

with the CVaR measure, where iterative generation of aggregated scenario constraints

were used to form smaller relaxation problems, whose optimal outcomes were then

used to directly evaluate the respective upper bound on the objective of the original

problem.

In this chapter, we develop a generalized scenario decomposition solution

framework for solving stochastic optimization problems with centrality equivalent-

based risk measures (1.4) by utilizing related principals to the ones described by

Espinoza and Moreno [20]. The subsequent sections are organized as follows. In

Section 2.2 we propose the scenario decomposition algorithm. Section 2.3 furnishes

experimental portfolio optimization benchmark models using HMCR and LogExpCR

measures that were used for algorithmic testing. Lastly, experimental results that

demonstrate the effectiveness of the developed technique when solving problems with

large-scale data sets are presented in Section 2.4.
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2.2 Scenario decompositon algorithm

In this section we propose an efficient scenario decomposition algorithm for

solving large-scale mathematical programming models using certainty equivalent-

based measures of risk. As previously discussed, significant emphasis has been placed

on solution techniques pertaining to optimization models using CVaR measures, while

little has been done to address computational challenges posed by large-scale scenario

sets for problems using the risk functionals in Section 1.2 in a general sense. Conse-

quently, we resort to describing the algorithmic procedures using the general definition

of certainty equivalent measures of risk (1.5), and demonstrate its applicability for

problems using HMCR measures and LogExpCR measures in order to emphasize its

conformity to any appropriate selection of function v(·) consistent with the description

in Section 1.2.

The ensuing scenario decomposition algorithm relies on solving a series of

relaxation problems composing of linear combinations of scenarios that are system-

atically decomposed until convergence with the “true” optimal solution is obtained.

Naturally, the core assumption behind such a scheme is that sequential solutions of

smaller relaxation problems can be achieved within shorter computation times. By

virtue of Section 1.2, when the distribution of loss function X(x, ω) has a finite sup-

port (scenario set) Ω = {ω1, . . . , ωN} with probabilities P(ωj) = πj > 0, the stochastic
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programming problem with risk constraint (1.10) admits the form

min g(x) (2.2a)

s. t. x ∈ C (2.2b)

η + (1− α)−1w0 ≤ h(x) (2.2c)

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
(2.2d)

wj ≥ X(x, ωj)− η, j ∈ N (2.2e)

wj ≥ 0, j ∈ N , (2.2f)

where we denoted N = {1, . . . , N}. If we assume that function g(x) and feasible set

C are “nice” in the sense that problem min{g(x) : x ∈ C} admits efficient solution

algorithms, then formulation (2.2) may present challenges that are two-fold. First,

constraint (2.2d) may need a specialized solution approach on account of the chosen

function v, especially in the case of large N . Also, when N is large, numerical

difficulties may be associated with handling a corresponding number of constraints

(2.2e)–(2.2f). In this work, we present an iterative technique for dealing with a large

number of scenario-based constraints (2.2e)–(2.2f).

Since the original problem (2.2) with many constraints of the form (2.2e)–

(2.2f) may be hard solve, a relaxation of (2.2) can be constructed by aggregating

some of the scenario constraints. Let {Sk : k ∈ K} denote a partition of the set N of

scenario indices (which we will simply call scenario set), i.e.,

⋃
k∈K

Sk = N , Si ∩ Sj = ∅ for all i, j ∈ K, i 6= j.
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Aggregation of scenario constraints by adding inequalities (2.2e) within sets Sk pro-

duces the following master problem:

min g(x) (2.3a)

s. t. x ∈ C (2.3b)

η + (1− α)−1w0 ≤ h(x) (2.3c)

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
(2.3d)

∑
j∈Sk

wj ≥
∑
j∈Sk

X(x, ωj)− |Sk|η, k ∈ K (2.3e)

wj ≥ 0, j ∈ N . (2.3f)

Clearly, any feasible solution of (2.2) is also feasible for (2.3), and the optimal value

of (2.3) represents a lower bound on that of (2.2). Since the relaxed problem contains

fewer scenario-based constraints (2.3e), it is potentially easier to solve. It would be of

interest then to determine the conditions under which an optimal solution of (2.3) is

also optimal for the original problem (2.2). Assuming that x∗ is an optimal solution

of (2.3), consider subproblem problem

min η + (1− α)−1w0 (2.4a)

s. t. w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
(2.4b)

wj ≥ X(x∗, ωj)− η, j ∈ N (2.4c)

wj ≥ 0, j ∈ N . (2.4d)

Proposition 2.1. Consider problem (2.2) and its relaxation (2.3) obtained by ag-

gregating scenario constraints (2.2e) over sets Sk, k ∈ K, that form a partition of
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N = {1, . . . , N}. Assuming that (2.2) is feasible, consider problem (2.4) where x∗ is

an optimal solution of relaxation (2.3). Let (η∗∗,w∗∗) be an optimal solution of (2.4).

If the optimal value of (2.4) satisfies condition

η∗∗ + (1− α)−1w∗∗0 ≤ h(x∗), (2.5)

then (x∗, η∗∗,w∗∗) is an optimal solution of the original problem (2.2).

Proof. Let x◦ be an optimal solution of (2.2). Obviously, one has g(x∗) ≤ g(x◦). The

statement of the proposition then follows immediately by observing that inequality

(2.5) guarantees the triple (x∗, η∗∗,w∗∗) to be feasible for problem (2.2). �

The statement of Proposition 2.1 allows one to solve the original problem (2.2)

by constructing an appropriate partition of N and solving the corresponding master

problem (2.3). Below we outline an iterative procedure that accomplishes this goal.

Step (0): The algorithm is initialized by including all scenarios in a single partition,

K = {0}, S0 = {1, . . . , N}.

Step (1): For a current partition {Sk : k ∈ K}, solve the master problem (2.3). If (2.3)

is infeasible, then the original problem (2.2) is infeasible as well, and the algorithm

terminates. Otherwise, let x∗ be an optimal solution of the master (2.3).

Step (2): Given a solution x∗ of the master, solve problem (2.4), and let (η∗∗,w∗∗) de-

note the corresponding optimal solution. If condition (2.5) is satisfied, algorithm ter-

minates with (x∗, η∗∗,w∗∗) being an optimal solution of (2.2) due to Proposition 2.1.

If however, condition (2.5) is violated,

η∗∗ + (1− α)−1w∗∗0 > h(x∗),
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the algorithm proceeds to Step 3 to update the partition.

Step (3): Determine the set of scenario-based constraints in (2.4) that, for a given

solution of the master x∗, are binding at optimality:

J = {j ∈ N : w∗∗j = X(x∗, ωj)− η∗∗ > 0}. (2.6)

Then, the elements of J are removed from the existing sets Sk:

Sk = Sk \ J , k ∈ K,

and added to the partition as single-element sets:

{
S0, . . . ,SK

}
∪
{
SK+1, . . . ,SK+|J |

}
,

where SK+i = {ji} for each ji ∈ J , i = 1, . . . , |J |,

and the algorithm proceeds to Step 1.

Theorem 2.2. Observe that at any given step of the described methodology the par-

titions are structured such that |S0| ≥ 1, while |Sk| = 1 for k = 1, . . . , K. Then,

the scenario decomposition algorithm for problem (2.2) terminates after at most N

iterations.

Proof. Let us show that during an iteration of the algorithm the size of the partition

of the set N of scenarios increases by at least one.

Let {Sk : k ∈ K} be the current partition of N , (x∗, η∗,w∗) be the correspond-

ing optimal solution of (2.3), and (η∗∗,w∗∗) be an optimal solution of (2.4) for the

given x∗, such that the stopping condition (2.5) is not satisfied,

η∗∗ + (1− α)−1w∗∗0 > h(x∗). (2.7)
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Let S̄∗ denote the set of constraints (2.4c) that are binding at optimality,

S̄∗ =
{
j : w∗∗j = X(x∗, ωj)− η∗∗ > 0, j ∈ N

}
.

Next, consider a problem obtained from (2.4) with a given x∗ by aggregating the

constraints (2.4c) that are non-binding at optimality:

min η + (1− α)−1w0 (2.8a)

s. t. w0 ≥ v−1
(∑
j∈S0

πjv(wj)

)
(2.8b)

wj ≥ X(x∗, ωj)− η, j ∈ S̄∗ (2.8c)∑
j∈S∗

wj ≥
∑
j∈S∗

X(x∗, ωj)− |S∗|η (2.8d)

wj ≥ 0, j ∈ N , (2.8e)

where S∗ = N \ S̄∗. Obviously, an optimal solution (η∗∗,w∗∗) of (2.4) will also be

optimal for (2.8).

Next, observe that at any stage of the algorithm partition {Sk : k ∈ K} is such

that there exists at most one set with |Sk| > 1, namely set S0, and the rest of the

sets in the partition satisfy |Sk| = 1, k 6= 0. Let us denote

S̄0 = N \ S0 =
⋃

k∈K\{0}

Sk
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Assume that S̄∗ ⊆ S̄0. By rewriting the master problem (2.3) as

min g(x) (2.9a)

s. t. x ∈ C, (2.9b)

η + (1− α)−1w0 ≤ h(x) (2.9c)

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
(2.9d)

wj ≥ X(x, ωj)− η, j ∈ S̄0 (2.9e)∑
j∈S0

wj ≥
∑
j∈S0

X(x, ωj)− |S0|η (2.9f)

wj ≥ 0, j ∈ N , (2.9g)

we observe that the components η∗,w∗ of its optimal solution are feasible for (2.8).

Indeed, from (2.9e) one has that

w∗j ≥ X(x∗, ωj)− η∗, j ∈ S̄∗,

which satisfies (2.8c), and also

w∗j ≥ X(x∗, ωj)− η∗, j ∈ S̄0 \ S̄∗ = S∗ \ S0.

Adding the last inequalities yields

∑
j∈S∗\S0

w∗j ≥
∑

j∈S∗\S0

X(x∗, ωj)− |S∗ \ S0|η∗,

which can then be aggregated with (2.9f) to produce

∑
j∈S∗

w∗j ≥
∑
j∈S∗

X(x∗, ωj)− |S∗|η∗,
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verifying the feasibility of (η∗,w∗) for (2.8). Since (2.9c) has to hold for (x∗, η∗,w∗),

we obtain that

η∗∗ + (1− α)−1w∗∗ ≤ η∗ + (1− α)−1w∗ ≤ h(x∗),

which furnishes a contradiction with (2.7). Therefore, one has to have S̄0 ⊂ S̄∗ for

(2.7) to hold, meaning that at least one additional scenario from S̄∗ will be added

to the partition during Step 3 of the algorithm. It is easy to see that the number of

iterations cannot exceed the number N of scenarios. �

2.2.1 Efficient solution method for problem (2.4)

Although formulation (2.4) may be solved using appropriate mathematical

programming techniques, an efficient alternative solution method can be employed

by noting that (2.4) is equivalent to

min η +
1

1− α
v−1

(∑
j∈N

πjv
(
X(x∗, ωj)− η

)
+

)
, (2.10)

which is a mathematical programming implementation of representation (1.5) under

a finite scenario model where realizations X(x∗, ωj) represent scenario losses corre-

sponding to an optimal decision x∗ in the master problem (2.3). An optimal value

of η in (2.4) and (2.10) can be computed directly using its properties dictated by

representation (1.5).

Namely, let Xj = X(x∗, ωj) represent the optimal loss in scenario j for problem

(2.3), and let X(m) be the m-th smallest outcome among X1, . . . , XN , such that

X(1) ≤ X(2) ≤ . . . ≤ X(N).
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The following proposition enables a framework for evaluating η∗∗ by establishing its

limiting factors among the outcomes.

More precisely, an optimal η∗∗ in problem (2.4) corresponding to the “cutoff”

point withing the tail of the loss distribution at a given tolerance level α ∈ (0, 1) must

satisfy the following proposition:

Proposition 2.3. Given an increasing convex function v(·) such that v(t) = O(t1+a)

for t → 0+ and some a > 0, an optimal η∗∗ in problems (2.10) and (2.4), where

α ∈ (0, 1), can be obtained as a solution of equation∑
j:Xj>η

πjv
′(Xj − η)

v′
(
v−1
(∑

j∈N πjv(Xj − η)+
)) + α− 1 = 0, (2.11)

where v′ denotes the derivative of v.

Proof. Given the underlying assumption that v is such that φ(X) = (1−α)−1v−1Ev(X)

is convex, the objective function of (2.10)

ΦX(η) = η + φ(X − η) = η +
1

1− α
v−1
(∑
j∈N

πjv(Xj − η)+

)
(2.12)

is convex on R. Moreover, the condition φ(η) > η for η 6= 0 of Theorem 1.1 guarantees

that the set of minimizers of ΦX(η) is closed and convex in R. Indeed, it is easy to

see that ΦX(η) is non-monotonic on R: ΦX(η) = η for η ≥ X(N) and ΦX(η) ∼ − αη
1−α

for η � −1.

Next, observe that while the assumed behavior of v(t) at t = 0+ necessarily

requires that v(0) = 0, this implied condition is not restrictive as one can always take

v(t) = ṽ(t)− ṽ(0) in (1.4) and (1.5) if ṽ(0) 6= 0.
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Given that v(t) is increasing and continuously differentiable on [0,∞), its

inverse v−1(t) exists for t ≥ 0 and is also continuously differentiable. For (2.11) to

hold, it suffices to show that function ΦX(η) is continuously differentiable. Observe

that under the assumptions on the properties of v(·), it is sufficient to show the

continuous differentiability of
∑

j∈N πjv(Xj − η)+ with respect to η. To this end,

consider the right and left derivatives of function v(Xj − η)+ at η = Xj, j ∈ N :

d−

dη
v(Xj − η)+

∣∣∣∣
η=Xj

= lim
ε→0−

v(Xj − η + ε)+ − v(Xj − η)+
−ε

= lim
ε→0−

v(ε)− v(0)

−ε
= 0,

where the last equality holds due to the assumption that v(t) = O(t1+a) at t → 0+.

In the case of the right-side derivative at η = Xj, one trivially has

d+

dη
v(Xj − η)+

∣∣∣∣
η=Xj

= lim
ε→0+

v(Xj − η − ε)+ − v(Xj − η)+
ε

= lim
ε→0+

v(0)− v(0)

ε
= 0.

Using the established continuous differentiability of ΦX(η), expression (2.11) is ob-

tained directly from the first order conditions. �

Remark. Note that conditions of Proposition 2.3 imply that the optimal η∗∗ in (2.4)

and (2.10) is unique. This is in stark contrast with the corresponding well-known

result for the Conditional Value-at-Risk measure CVaRα(X), where the set of optimal

solutions of (1.6) in a finite scenario case generally represents a non-empty segment

of real line, the left endpoint of which is equal to VaRα(X). Note, however, that the

case of CVaR, where v(t) = t, does not satisfy the condition of Proposition 2.3 on

the behavior of v(t) at t = 0+.
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Remark. Expression (2.11) allows for obtaining optimality conditions for η in the

special cases corresponding to the families of HMCR and LogExpCR measures con-

sidered in this work. Particularly, in the HMCR case one can take v(t) = tp for t ≥ 0,

whereby optimality condition (2.11) reduces to(∑
j∈N πj(Xj − η)p−1+

)1/(p−1)
(∑

j∈N πj(Xj − η)p+

)1/p − (1− α)1/(p−1) = 0, p > 1. (2.13)

Similarly, when v(t) = et − 1, the corresponding condition for LogExpCR measure is

given by ∑
j:Xj>η

πje
Xj−η∑

j∈N πje
(Xj−η)+

+ α− 1 = 0. (2.14)

Recall that the above scenario decomposition algorithm uses subproblem (2.4)

for determining the optimal value of η∗∗, as well as for identifying (during Step 3) the

set J of scenarios that are binding at optimality, i.e., for which X(x∗, ωj)− η∗∗ > 0.

This can be accomplished with the help of the derived optimality conditions (2.11)

as follows.

Step (i): Compute values Xj = X(x∗, ωj), where x∗ is an optimal solution of (2.3),

and sort them in ascending order: X(1) ≤ . . . ≤ X(N).

Step (ii): For m = N,N − 1, . . . , 1, compute values Tm as

TN = 1,

Tm =

∑N
j=m+1 πjv

′(X(j) −X(m)

)
v′
(
v−1

(∑N
j=m+1 πjv

(
X(j) −X(m)

))) − α + 1, m = N − 1, . . . , 1,
(2.15)

until m∗ is found such that

Tm∗ ≤ 0, Tm∗+1 > 0.
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Step (iii): If Tm∗ = 0, then the solution η∗∗ of (2.11) is equal to X(m∗). Otherwise,

η∗∗ satisfies

η∗∗ ∈
(
X(m∗), X(m∗+1)

)
,

and its value can be found by solving (2.11) using an appropriate numerical procedure,

such as Newton’s method. The set J in (2.6) is then obtained as

J = {j : Xj = X(k), k = m∗ + 1, . . . , N}.

Proposition 2.4. Given an optimal solution x∗ of the master problem (2.3), the

algorithm described in steps (i)–(iii) yields the value η∗∗ and the set J to be used

during steps 2 and 3 of the scenario decomposition algorithm.

Proof. First, observe that the optimal solution η∗∗ of (2.4) and (2.11) satisfies

η∗∗ ≤ X(N).

Indeed, assume to the contrary that η∗∗ = X(N) + ε for some ε > 0. The optimal

value of (2.4) and (1.5) is then equal to X(N) + ε, and can be improved by selecting,

e.g., ε = ε/2.

Next, observe that the quantities Tm (2.15) are equal to the values of the

left-hand side in the optimality condition (2.11) computed at η = X(m), or, in other

words, the values of the derivative of function ΦX(η) in (2.12) at η = X(m). The

value of TN = 1 follows directly from the fact that ΦX(η) = η for η ≥ X(N). Hence,

step (ii) consists in determining an interval on which the derivative Φ′X(η) changes

sign. Then, the value of η∗∗ such that Φ′X(η∗∗) = 0 is obtained during step (iii),
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and the set J in (2.6) is constructed as the set of scenario indices corresponding to

X(m∗+1), X(m∗+2), . . . , X(N).

We conclude by noting that it is not necessary to prove that there always

exists m∗ ∈ {1, . . . , N − 1} such that Tm∗ ≤ 0 and Tm∗+1 > 0. If indeed it were to

happen that Tm > 0 for all m = 1, . . . , N , this would imply that set J must contain

all scenarios, J = N , making the exact value of η∗∗ irrelevant in this case, since the

original problem (2.2) would have to be solved at the next iteration of the scenario

decomposition algorithm. �

A formal description of the described scenario decomposition process is pre-

sented in Algorithms 2.1–2.2.

Algorithm 2.1 Scenario decomposition algorithm

1. Initialize: K = {0}, S0 = {1, . . . , N}, η∗∗, w∗∗0 =∞, h(x∗) = −∞;

2. While η∗∗ + (1− α)−1w∗∗0 > h(x∗) do

3. x∗ := solution of master problem (2.3) for a current partition {Sk : k ∈ K};
4. if (2.3) is infeasible then

5. STOP

6. else

7. (η∗∗,w∗∗) := solution of sub-problem (2.4) for the given x∗;

8. if η∗∗ + (1− α)−1w∗∗0 ≤ h(x∗) then

9. STOP;

10. else

11. Identify binding scenarios: J := {j ∈ N : w∗∗j = X(x∗, ωj)− η∗∗ > 0};
12. for k = 0, . . . , |K| do

13. Sk = Sk \ J ;

14. for i ∈ J do

15. K := K ∪ {|K|+ 1};
16. S|K| := {i};
17. return x∗
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Algorithm 2.2 Solution method for sub-problem (2.4)

1. Compute Xj := X(x∗, ωj) for j ∈ N ;

2. Sort Xj in ascending order: X(1) ≤ X(2) ≤ . . . ≤ X(N);

3. m := N ; Tm := 1;

4. while Tm > 0 do

5. m := m− 1;

6. Tm :=

∑N
j=m+1 πjv

′(X(j) −X(m)

)
v′
(
v−1

(∑N
j=m+1 πjv

(
X(j) −X(m)

))) − α + 1;

7. m∗ := m;

8. if Tm∗ = 0 then

9. η∗∗ := X(m∗);

10. else

11. Compute η∗∗ by solving (2.11) on interval (Tm∗+1, Tm∗);

2.3 Case study: Portfolio optimization with HMCR and LogExpCR

measures

Portfolio optimization problems are commonly used as an experimental plat-

form in risk management and stochastic optimization. Common implementations

involve risk-reward analysis via mathematical programming models whose objective

or constraints contain risk and reward measures. In this section we illustrate the

computational performance of the proposed scenario decomposition algorithm on a

portfolio optimization problem, where the investment risk is quantified using HMCR

or LogExpCR measures.

A standard formulation of portfolio optimization problem entails determining

the vector of portfolio weights x = (x1, . . . , xn)> of n assets so as to minimize the risk

while maintaining a prescribed level of expected return. We adopt the traditional
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definition of portfolio losses X as negative portfolio returns, X(x, ω) = −r(ω)>x,

where r(ω) = (r1(ω), . . . , rn(ω))> are random returns of assets. Then, the portfolio

selection model takes the general form

min R
(
− r(ω)>x

)
(2.16a)

s. t. 1>x = 1 (2.16b)

E
[
r(ω)>x

]
≥ r̄ (2.16c)

x ≥ 0, (2.16d)

where 1 = (1, . . . , 1)>, equality (2.16b) represents the budget constraint, and (2.16b)

ensures a minimum expected portfolio return level, r̄, and (2.16d) corresponds to no-

short-selling constraints. The distribution of the random vector r(ω) of assets’ returns

is given by a finite set of N equiprobable scenarios rj = r(ωj) = (r1j, . . . , rnj)
>,

πj = P
{
r = (r1j, . . . , rnj)

>} = 1/N, j ∈ N ≡ {1, . . . , N}. (2.17)

2.3.1 Portfolio optimization using HMCR measures

In the case when risk measure ρ in (2.16) is selected as a higher moment co-

herent risk measure, ρ(X) = HMCRp,α(X), the portfolio optimization problem (2.16)

can be written in a stochastic programming form that is consistent with the general
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formulation (2.2) as

min η + (1− α)−1w0 (2.18a)

s. t. w0 ≥ ‖(w1, . . . , wN)‖p (2.18b)

π
−1/p
j wj ≥ −r>j x− η, j ∈ N (2.18c)

x ∈ C, w ≥ 0, (2.18d)

where C represents a polyhedral set comprising the expected return, budget, and

no-short-selling constraints on the vector of portfolio weights x:

C =
{

x ∈ Rn :
∑

j∈N
πjr
>
j x ≥ r̄, 1>x = 1, x ≥ 0

}
. (2.19)

Due to the presence of p-order cone constraint (2.18b), formulation (2.18) constitutes

a p-order cone programming problem (pOCP).

Solution methods for problem (2.18) are dictated by the given value of param-

eter p in (2.18b). As has been mentioned, in the case of p = 1 formulation (2.18)

reduces to a LP problem that corresponds to a choosing the CVaR as the risk mea-

sure, a case that has received considerable attention in the literature. In view of this,

of particular interest are nonlinear instances of problem (2.18) that correspond to

values of the parameter p ∈ (1,+∞).

Below we consider instances of (2.18) with p = 2 and p = 3. In the case of

p = 2, problem (2.18) can be solved using SOCP self-dual interior point methods.

In the case of p = 3 and, generally, p ∈ (1, 2) ∪ (2,∞), the p-cone (2.18b) is not

self-dual, and we employ two techniques for solving (2.18) and the corresponding

master problem (2.3): (i) a SOCP-based approach that relies on the fact that for a
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rational p, a p-order cone can be equivalently represented via a sequence of second

order cones, and (ii) an LP-based approach that allows for obtaining exact solutions

of pOCP problems via cutting-plane methods.

Detailed discussions of the respective formulations of problems (2.18) are pro-

vided below. Throughout this section, we use abbreviations in brackets to denote

the different formulations of the “complete” versions of (2.18) (i.e., with complete set

of scenario constraints (2.18c)). For each “complete” formulation, we also consider

the corresponding scenario decomposition approach, indicated by suffix “SD”. Within

the scenario decomposition approach, we present formulations of the master problem

(denoted by subscript “MP”); the respective subproblems are then constructed ac-

cordingly. For example, the SOCP version of the complete problem (2.18) with p = 2

is denoted [SOCP], while the same problem solved by scenario decomposition is re-

ferred to as [SOCP-SD], with the master problem being denoted as [SOCP-SD]MP

(see below).

SOCP formulation in p = 2 case. In case when p = 2, formulation (2.18)

constitutes a standard SOCP problem that can be solved using a number of available

SOCP solvers. In order to apply it to the scenario decomposition algorithm presented

in Section 2.2, the master problem (2.3) is formulated with respect to the original
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problem (2.18) with p = 2 as follows:

[SOCP-SD]MP := min η + (1− α)−1w0

s. t. w0 ≥ ‖(w1, . . . , wN)‖2∑
j∈Sk

π
1/2
j

π(k)
wj ≥

(∑
j∈Sk

πj
π(k)

r>j

)
x− η, k ∈ K

w ≥ 0, x ∈ C.

(2.20)

Note that in the case of HMCR2,α measure, the function v+(t) = t2 is positive ho-

mogeneous of degree two, which allows for eliminating the scenario probabilities πj

from constraint (2.3d) and formulating the latter in the form of a second order cone

in the full formulation (2.18) and the master problem [SOCP-SD]MP. This affects

constraints (2.3d) which then can be written in the form of the second constraint in

[SOCP-SD]MP. The subproblem (2.4) is reformulated accordingly.

SOCP reformulation of p-order cone program. One of the possible approaches

of solving pOCP problem (2.18) with p = 3 consists in reformulating the p-cone

constraint (2.18b) via a set of quadratic cone constraints. Such an exact reformulation

is possible when the parameter p has a rational value, p = q/s. Then, a (q/s)-order

cone constraint in the positive orthant RN+1
+

w0 ≥ (w
q/s
1 + . . .+ w

q/s
N )s/q, w ≥ 0, (2.21)

may equivalently be represented as the following set in RN+1
+ × RN+ :

w0 ≥ ‖u‖1

wqj ≤ usjw
q−s
0 , j ∈ N

w,u ≥ 0.

(2.22)
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Each of the N nonlinear inequalities in (2.22) can in turn be represented as a sequence

of three-dimensional rotated second-order cones of the form ξ20 ≤ ξ1ξ2, resulting in a

SOCP reformulation of the rational-order cone (2.21) [2, 27, 38]. Such a representa-

tion, however, is not unique and in general may comprise different number of rotated

second order cones for a given p = q/s. In this case study we use the technique of

[37], which allows for representing rational order p-cones with p = q/s in RN+1 via

Ndlog2 qe second order cones. Namely, in the case of p = 3, when q = 3, s = 1,

the 3-order cone (2.21) can be equivalently replaced with dlog2 3eN = 2N quadratic

cones

w0 ≥ ‖u‖1

w2
j ≤ w0vj, v2j ≤ wjuj, j ∈ N

w,u,v ≥ 0.

(2.23)

In accordance with the above, a p-order cone inequality may be represented

in RN+1 by a set of 3D conic constraints and a linear inequality when p is a positive

rational number. Thus, the [SpOCP] problem (2.18) takes the following form:

[SpOCP] := min η + (1− α)−1w0

s. t. w0 ≥ ‖u‖1

w2
j ≤ w0vj, v

2
j ≤ wjuj, j ∈ N

π
−1/p
j wj ≥ −r>j x− η, j ∈ N

x ∈ C, w,v,u ≥ 0.

(2.24)

The corresponding master problem [SpOCP-SD]MP in a scenario decomposition-based

method is constructed by replacing constraints of the form (2.18c) in the last problem
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as follows:

[SpOCP-SD]MP := min η + (1− α)−1w0

s. t. w0 ≥ ‖u‖1

w2
j ≤ w0vj, v

2
j ≤ wjuj, j ∈ N

∑
j∈Sk

π
1−1/p
j

π(k)
wj ≥

(∑
j∈Sk

πj
π(k)

r>j

)
x− η, k ∈ K

x ∈ C, w,v,u ≥ 0.

(2.25)

An exact solution method for pOCP programs based on polyhedral approxima-

tions. Computational methods for solving p-order cone programming problems that

are based on polyhedral approximations [27, 58] represent an alternative to interior-

point approaches, and can be beneficial in situations when a pOCP problem needs to

be solved repeatedly, with small variations in problem data or problem structure.

Thus, in addition to the SOCP-based approaches for solving the pOCP prob-

lem (2.18) discussed above, we also employ an exact polyhedral-based approach with

O(ε−1) iteration complexity that was proposed in [58]. It consists in reformulating

the p-order cone w0 ≥ ‖(w1, . . . , wN)‖p via a set of three-dimensional p-cones

w0 = w2N−1, wN+j ≥ ‖(w2j−1, w2j)‖p, j = 1, . . . , N − 1, (2.26)

and then iteratively building outer polyhedral approximations of the 3D p-cones until

the solution of desired accuracy ε > 0 is obtained,

‖(w1, . . . , wN)‖p ≤ (1 + ε)w0.
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In the context of the lifted representation (2.26), the above ε-relaxation of p-cone

inequality translates into N − 1 corresponding approximation inequalities for 3D p-

cones:

‖(w∗2j−1, w∗2j)‖p ≤ (1 + ε)w∗N+j, j = 1, . . . , N − 1, (2.27)

where ε = (1 + ε)1/dlog2Ne − 1. Then, for a given ε > 0, an ε-approximate solution

of pOCP portfolio optimization problem (2.18) is obtained by iteratively solving a

linear programming problem

[LpOCP] := min η + (1− α)−1w0

s. t. w0 = w2N−1

wN+j ≥ αp(θkj)w2j−1 + βp(θkj)w2j, θkj ∈ Θj, j = 1, . . . , N − 1

π
−1/p
j wj ≥ −r>j x− η, j ∈ N

x ∈ C, w ≥ 0,

(2.28)

where coefficients αp and βp are defined as

αp(θ) =
cosp−1 θ

(cosp θ + sinp θ)1−
1
p

, βp(θ) =
sinp−1 θ

(cosp θ + sinp θ)1−
1
p

.

If for a given solution w∗ = (w∗0, . . . , w
∗
2N−1) of [LpOCP], the approximation condition

(2.27) is not satisfied for some j = 1, . . . , N − 1,

‖(w∗2j−1, w∗2j)‖p > (1 + ε)w∗N+j, (2.29)

then a cut of the form

wN+j ≥ αp(θ
∗
j )w2j−1 + βp(θ

∗
j )w2j, θ∗j = arctan

w∗2j
w∗2j−1

, (2.30)
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is added to [LpOCP]. The process is initialized with Θj = {θ1}, θ1 = π/4, j =

1, . . . , N − 1, and continues until no violations of condition (2.29) are found. In [58]

it was shown that this cutting-plane procedure generates an ε-approximate solution

to pOCP problem (2.18) within O(ε−1) iterations.

The described cutting plane scheme can be employed to solve the master prob-

lem corresponding to the pOCP problem (2.18). Namely, the cutting-plane formu-

lation of this master problem is obtained by replacing the p-cone constraint (2.18b)

with cutting planes similarly to [LpOCP], and the set of N scenario constraints (2.18c)

with the aggregated constraints (compare to [SpOCP-SD]MP):

[LpOCP-SD]LB := min η + (1− α)−1t

s. t. w0 = w2N−1

wN+j ≥ αp(θkj)w2j−1 + βp(θkj)w2j, θkj ∈ Θj,

j = 1, . . . , N − 1

∑
j∈Sk

π
1−1/p
j

π(k)
wj ≥

(∑
j∈Sk

πj
π(k)

r>j

)
x− η, k ∈ K

x ∈ C, w ≥ 0.

(2.31)

2.3.2 Portfolio optimization using LogExpCR measures

In order to demonstrate the applicability of the proposed method when solving

problems with measures of risk other than the HMCR class, we examine an analogous

experimental framework for instances when ρ(X) = LogExpCRα(X). The portfolio
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optimization problem (2.16) may then written as

[LogExpCP] := min η + (1− α)−1w0

s. t. w0 ≥ ln
∑
j∈N

πje
wj

wj ≥ −r>j x− η, j ∈ N

x ∈ C, w ≥ 0.

(2.32)

Note that in contrast to pOCP and SOCP problems discussed in the previous section,

the above formulation is not a conic program since its first constraint that involves

logarithm and exponent functions is not a cone. In view of this, we call this problem

a log-exponential convex programming problem (LogExpCP), which can be solved

with interior point methods.

The corresponding master problem for the scenario decomposition algorithm

is obtained from [LogExpCP] by aggregating the scenario constraints in accordance

to (2.3):

[LogExpCP-SD]MP := min η + (1− α)−1w0

s. t. w0 ≥ ln
∑
j∈N

πje
wj

∑
j∈Sk

wj ≥ −
∑
j∈Sk

r>j x− |Sk|η, k ∈ K

x ∈ C, w ≥ 0.

(2.33)

In the next section we examine the computational performances within each imple-

mentation class of problem (2.18).
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2.4 Computational experiments, scenario data, and results

The portfolio optimization problems described in Section 2.3.1 and 2.3.2 were

implemented in C++ using callable libraries of three solvers, CPLEX 12.5, GUROBI

5.02, and MOSEK 6. Computations ran on a six-core 2.30GHz PC with 128GB RAM

in 64-bit Windows environment. In the context of benchmarking, each adopted formu-

lation was tested against its scenario decomposition-based implementation. Moreover,

it was of particular interest to examine the performance of the scenario decomposition

algorithm using various risk measure configurations, thus, the following problem set-

tings were solved: problems [SOCP]-[SOCP-SD] with risk measure as defined by (1.7)

for p = 2; problems [SpOCP]-[SpOCP-SD] and [LpOCP]-[LpOCP-SD] with measure

(1.7) for p = 3; and problems [LECR]-[LECR-SD] with risk measure (1.8). The value

of parameter α in the employed risk measures was fixed at α = 0.9.

The scenario data in our numerical experiments was generated as follows.

First, a set of n stocks (n = 50, 100, 200) was selected at random from the S&P500

index. Then, a covariance matrix of daily returns as well as the expected returns

were estimated for the specific set of n stocks using historical prices from January 1,

2006 to January 1, 2012. Finally, the desired number N of scenarios, ranging from

1,000 to 100,000, have been generated as N iid samples from a multivariate normal

distribution with the obtained mean and covariance.

On account of precision arithmetic errors associated with the numerical solvers,

we introduced a tolerance level ε > 0 specifying the permissible gap in the stopping
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criterion (2.5):

η∗∗ + (1− α)−1w∗∗0 ≤ h(x∗) + ε. (2.34)

Specifically, the value ε = 10−5 was was chosen to match the reduced cost of the

simplex method in CPLEX and GUROBI. In a similar manner, we adjust (2.15)

around m∗ for precision errors as

Tm∗+1 (p)− ε < 0 and Tm∗ (p) + ε > 0.

Empirical observations suggest the accumulation of numerical errors is exacerbated

by the use of fractional values of scenarios in assets returns, rij. To alleviate the

numerical accuracy issues, the data in respective problem instances of the scenario

decomposition algorithm were appropriately scaled.

The results of our numerical experiments are summarized in Tables 2.1 – 2.5

at the end of Chapter 2. Unless stated otherwise, the reported running time values

were averaged over twenty instances and the symbol “—” indicates that the compu-

tation time limit of 3600 seconds was exceeded. Table 2.1 presents the computational

times observed during solving the full formulation, [SOCP], of problem (2.18) with

HMCR measure and p = 2, and solving the same problem using the scenario de-

composition algorithm, [SOCP-SD], with the three solvers, CPLEX, GUROBI, and

MOSEK. Observe that the scenario decomposition method performs better for all

instances and solvers, with the exception of the largest three scenario instances when

using GUROBI with n = 50 assets. However, this trend is tampered as the number

of assets increases.
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Table 2.2 reports the running times observed during solving of the second-order

cone reformulation of the pOCP version of problem (2.18) with p = 3, in the full for-

mulation ([SpOCP]) and via the scenario decomposition algorithm ([SpOCP-SD]).

The obtained results indicate that, although the scenario decomposition algorithm is

slower on smaller problem instances, it outperforms direct solution methods as the

numbers of scenarios N and assets n in the problem increase. Due to observed numer-

ical instabilities, the CPLEX solver was not considered for this particular experiment.

Next, the same problem is solved using using the polyhedral approximation

cutting-plane method described in Section 2.3.1. Table 2.3 shows the running times

achieved by all three solvers for problems [LpOCP] and [LpOCP-SD] with p = 3.

In this case, the scenario decomposition method resulted in order-of-magnitude im-

provements, which can be attributed by the “warm-start” capabilities of CPLEX and

GUROBI’s simplex solvers. Consistent with these conclusions is also the fact that

the simplex-based solvers of CPLEX and GUROBI yield improved solution times on

the full problem formulation comparing to the SOCP-based reformulation [SpOCP],

where barrier solvers were invoked. The discrepancy between [LpOCP] and [LpOCP-

SD] solution times is especially prominent for MOSEK, but in this case it appears

that MOSEK’s interior-point LP solver was much less effective at solving the [LpOCP]

formulation using the cutting plane method.

Finally, Table 2.4 displays the running times for the discussed implementation

of problems [LogExpCR] and [LogExpCP-SD]. Of the three solvers considered in this

case study, only MOSEK was capable of handling problems with constraints that
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involve sums of univariate exponential functions. Again, the scenario decomposition-

based solution method appear to be preferable in comparison to solving the full

formulation. Note, however, that computational times were not averaged over 20

instances in this case due to numerical difficulties associated with the native solver

for many instances of [LogExpCP].

It is also of interest to comment on the number of scenarios that had to be

generated during the scenario decomposition procedure in order to yield an optimal

solution. Table 2.5 lists the corresponding average number of scenarios partitioned

for each problem type over all instances. Although these numbers may slightly differ

among the three solvers, we only present results for MOSEK as it was the only

platform used to solve all the problems in Sections 2.3.1 and 2.3.2. Observe that far

fewer scenarios are required relative to the total set size N . In fact, as a percentage of

the total, the number of scenarios that were generated during the algorithm in order

to achieve optimality was between 0.7% and 11% of the set size.

2.5 Conclusions

In this chapter, we considered the efficiency of solving risk-based stochastic

optimization problems that utilize large-scale scenario data sets. We exploit the no-

tion that a significant portion of representative scenarios are not required to obtain

an optimal solution, and accordingly develop a scenario decomposition technique con-

tingent on the identification and separation of “non-redundant” scenarios by solving

a series of smaller relaxation problems whose solution can be numerically evaluated in
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the context of the original problem. Numerical experiments on portfolio optimization

problems using simulated return data following the covariance structure of randomly

chosen S&P500 stocks demonstrate that significant reductions in solution times may

be achieved by employing the proposed algorithm. Particularly, performance im-

provements were observed for the large-scale instances when using HMCR measures

with p = 2, 3, and LogExpCR measures.
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Table 2.2: Average computation times (in seconds) obtained by solving problems
[SpCOP] and [SpCOP-SD] for p = 3.

GUROBI MOSEK
n N [SpOCP] [SpCOP-SD] [SpOCP] [SpCOP-SD]
50 1000 2.58 2.73 0.18 0.63

2500 10.63 6.61 0.49 0.96
5000 32.01 19.27 1.06 1.70
10000 87.27 41.34 2.31 3.49
25000 198.56 92.39 7.14 6.70
50000 455.63 540.09 16.36 13.70
100000 1217.96 2080.34 35.33 30.29

100 1000 7.16 3.14 0.30 0.75
2500 29.47 8.44 0.85 1.37
5000 90.25 19.74 1.88 2.32
10000 277.72 44.31 4.52 3.91
25000 642.63 92.11 12.66 8.66
50000 1365.37 1716.37 28.64 15.10
100000 — — 65.48 28.29

200 1000 17.86 3.87 0.69 1.01
2500 78.28 8.65 1.90 1.56
5000 276.89 22.40 4.41 2.47
10000 799.65 49.02 9.88 4.84
25000 2118.11 107.14 29.99 9.60
50000 — — 64.52 17.41
100000 — — 139.87 34.99



www.manaraa.com

45

T
ab

le
2.

3:
A

ve
ra

ge
co

m
p
u
ta

ti
on

ti
m

es
(i

n
se

co
n
d
s)

ob
ta

in
ed

b
y

so
lv

in
g

p
ro

b
le

m
s

[L
p
O

C
P

]
an

d
[L

p
O

C
P

-S
D

]
fo

r
p

=
3.

C
P

L
E

X
G

U
R

O
B

I
M

O
S
E

K
n

N
[L

p
O

C
P

]
[L

p
C

O
P

-S
D

]
[L

p
O

C
P

]
[L

p
C

O
P

-S
D

]
[L

p
O

C
P

]
[L

p
C

O
P

-S
D

]
50

10
00

0.
27

0.
12

0.
22

0.
59

0.
82

0.
46

25
00

1.
65

0.
24

0.
74

0.
83

4.
26

0.
66

50
00

6.
81

0.
46

2.
31

1.
54

15
.0

8
1.

46
10

00
0

19
.2

0
1.

42
7.

73
3.

86
60

.6
6

3.
75

25
00

0
31

.9
3

3.
93

56
.5

2
13

.7
4

38
1.

67
11

.3
4

50
00

0
17

9.
49

16
.0

7
11

7.
72

36
.5

1
14

12
.8

1
25

.4
7

10
00

00
90

3.
36

62
.7

9
47

4.
68

11
2.

72
—

54
.4

5
10

0
10

00
0.

37
0.

13
0.

23
0.

61
2.

94
0.

65
25

00
2.

22
0.

28
0.

86
0.

98
7.

11
1.

06
50

00
8.

58
0.

79
2.

82
1.

76
32

.2
0

1.
95

10
00

0
28

.7
1

2.
18

9.
28

4.
13

12
2.

75
4.

99
25

00
0

45
.3

7
4.

99
35

.1
1

13
.1

3
11

38
.9

9
15

.3
4

50
00

0
20

0.
12

18
.8

0
12

2.
21

39
.7

8
27

53
.5

4
34

.1
7

10
00

00
33

36
.2

6
82

.7
9

13
16

.2
9

13
8.

74
—

80
.1

5
20

0
10

00
0.

61
0.

20
0.

33
0.

89
15

.6
8

1.
06

25
00

3.
13

0.
44

1.
30

1.
17

20
.6

4
1.

37
50

00
13

.2
5

1.
01

3.
72

2.
11

70
.4

9
2.

97
10

00
0

47
.9

7
3.

31
13

.2
0

4.
72

32
2.

36
8.

12
25

00
0

19
5.

28
6.

98
94

.4
5

14
.7

7
24

18
.5

2
26

.9
1

50
00

0
93

6.
60

27
.2

0
66

5.
61

45
.4

3
—

53
.6

2
10

00
00

—
11

4.
08

33
01

.4
4

16
0.

92
—

12
3.

89



www.manaraa.com

46

Table 2.4: Average computation times (in seconds) obtained by solving a specified
number of instances for problems [LECR] and [LECR-SD].

MOSEK Instances Solved
n N [LECR] [LECR-SD]
50 1000 0.61 0.27 12

2500 0.97 0.58 14
5000 1.89 1.18 12
10000 4.88 2.57 9
25000 14.99 7.94 12
50000 26.65 18.76 15
100000 65.45 61.48 17

100 1000 0.57 0.25 17
2500 1.65 0.53 16
5000 3.69 1.14 10
10000 9.18 2.53 15
25000 24.61 13.83 13
50000 50.66 39.72 19
100000 148.54 59.02 16

200 1000 5.25 0.37 19
2500 4.22 0.75 17
5000 9.53 1.39 18
10000 21.17 2.63 17
25000 62.03 7.59 17
50000 145.89 16.47 18
100000 333.73 43.56 19
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Table 2.5: Average number of partitioned scenarios from solving the scenario
decomposition-based problems listed in Sections 2.3.1 – 2.3.2.

MOSEK
n N [SOCP-SD] [SpOCP-SD] [LpOCP-SD] [LECR-SD]
50 1000 80.3 24.8 21.3 61.8

2500 180.8 47.8 47.0 77.8
5000 349.3 80.3 79.0 104.6
10000 711.6 133.4 128.3 154.3
25000 1834.9 232.0 318.3 178.2
50000 3582.1 445.4 675.0 841.7
100000 6945.1 774.1 1346.4 1447.5

100 1000 87.2 32.0 27.0 81.4
2500 191.2 73.6 74.1 107.8
5000 367.6 107.4 102.4 192.2
10000 711.1 148.9 156.9 229.7
25000 1808.6 278.1 348.6 1869.1
50000 3802.9 457.8 729.7 2418.6
100000 7323.3 831.3 1395.8 923.4

200 1000 108.2 39.5 36.4 100.7
2500 201.7 72.7 73.0 154.5
5000 395.6 116.3 119.6 198.1
10000 744.0 184.9 171.2 304.6
25000 1805.5 308.3 347.0 464.2
50000 3607.8 512.2 697.6 788.1
100000 7198.9 865.0 1384.3 1153.5



www.manaraa.com

48

CHAPTER 3
ON RISK-AVERSE MAXIMUM WEIGHTED SUBGRAPH

PROBLEMS

3.1 Introduction

For decades, network problems with topologically exogenous information have

occupied a prominent place in graph theory and network science literature. A popular

class of problems of this type involves finding a subset of minimum or maximum weight

conforming to a prescribed structural property in a graph whose vertices are char-

acterized by deterministic weights [6, 7, 21, 32, 39]. Several influential studies have

established a foundation for exact combinatorial solution algorithms for such prob-

lems [8, 17, 40]. Most notably, Carraghan and Pardalos [17] developed a backtracking

branch-and-bound method for efficiently solving the maximum clique problem by ex-

ploiting the hereditary property [53] of complete subgraphs. Many extensions of their

work improved upon the process of reducing the search space by using vertex coloring

schemes for branching and for obtaining upper bounds on the maximum achievable

subgraph order (see, e.g., [16, 25, 52]). Analogous weight-based procedures have also

been used when seeking a maximum weight subgraph in the presence of deterministic

vertex weights [6, 31, 39].

Significant emphasis has also been placed on network problems with uncertain

exogenous information evidenced in various forms that influences the overall topology,

flow distribution and costs, etc. Particularly common are considerations of stochastic

factors in context of network flow and vehicle routing problems where uncertainties
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are attributed to arc capacities or node demands [5, 15, 22, 23]. Also, a number of

studies examined the effects of probabilistic arc failures in networks [3, 56] and intro-

duced risk-based approaches to minimize the corresponding flow losses [13, 48]. The

problem of finding a subset of vertices of maximum cardinality that form a clique with

a specified probability, given that edges in the graph can fail with some probabilities,

is studied in [36]; a similar approach in application to certain clique relaxations is

pursued in [62]. Although uncertainties in most of the aforementioned cases influ-

ence decisions related to directed network flows, far less emphasis has been placed

on examining decision making regarding optimal subgraph topologies and resource

allocation in settings where uncertainties are induced by stochastic factors associated

with network vertices.

In this work [47], we employ a stochastic programming framework that is based

on formalism of risk measures [29], and in particular, coherent risk measures, in order

to find minimum-risk structures in graphs with stochastic vertex weights. Namely, we

consider a class of risk-averse maximum weighted1 subgraph problems (R-MWSP) that

represent a stochastic extension of the so-called maximum weight subgraph problems

considered in literature in the context of hereditary graph-theoretical properties. We

propose a graph-based branch-and-bound algorithm for solving problems in the R-

MWSP class, which is generally applicable to maximum weight subgraph problems

1The word “weighted” is reserved to address problems that seek maximal subgraphs
of minimum risk subject to stochastic vertex weights. The term “weight” defines a more
traditional problem setting where vertex weights are deterministic and a subgraph with the
largest cumulative weight is sought.



www.manaraa.com

50

where a subgraph’s weight is given by a super-additive function whose evaluation

requires solving an optimization problem. As an illustrative example of the proposed

concepts, we consider a risk-averse maximum weighted clique problem.

The remainder of this chapter is organized as follows. In Section 3.2 we in-

troduce the general formulation of R-MWS problems and discuss their properties.

Section 3.3 presents solution methods for R-MWSP, including a mathematical pro-

gramming formulation and a graph-based (combinatorial) branch-and-bound method.

Section 3.4 considers a numerical case study on solving risk-averse maximum weighted

clique problems using HMCR measures for randomly generated graphs with various

densities. Furhter, an extension of the risk-averse maximum weighted clique in con-

text of neighbor dependent risk exposure is also provided in Section 3.4. Solution

properties relative to the optimal subgraph sizes obtained from solving the mentioned

configurations using CVaR measures are discussed.

3.2 Risk-averse maximum vertex problem

Let G = (V,E) be an undirected graph where each vertex i ∈ V has a positive

weight wi > 0. For any subset S of its vertices, let G[S] denote the subgraph of G

induced by S, i.e., a graph such that any of its vertices i, j are connected by an edge

if and only if (i, j) is an edge in G.

Property Π is said to be hereditary with respect to induced subgraphs (hereditary

for short) if for any graph satisfying Π the removal of a vertex preserves Π in the

resulting induced subgraph. Examples of hereditary properties include “complete”;
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“independent”, or “stable”; “degree constrained”; “planar”, etc. Given a hereditary

property Π, it may be of interest to find a subgraph of G that satisfies Π and has the

largest additive weight, which is known as the maximum weight subgraph problem, or

the maximum weight Π problem:

max
S⊆V

{∑
i∈S

wi : G[S] satisfies Π
}
. (3.1)

A subgraph of G that satisfies Π and whose order cannot be further increased without

violating Π is known as a maximal Π-subgraph; the largest such subgraph represents

the maximum Π-subgraph. Obviously, an optimal solution of the maximum weight

Π problem (3.1) is necessarily a maximal Π-subgraph, but may not be its maximum

Π-subgraph.

Finding subgraphs of maximum weight with hereditary properties represents

a large and important class of graph theoretical problems. A seminal result regarding

maximum subgraph problems with hereditary properties was established by Yan-

nakakis [61]. Particularly, property Π is called nontrivial if it is satisfied by a single-

vertex graph and not satisfied by every graph, and is called interesting if the order of

graphs satisfying Π is unbounded. Then, the following holds:

Theorem 3.1 (Yannakakis [61]). If property Π is hereditary with respect to in-

duced subgraphs, nontrivial, and interesting, then the maximum Π problem

max
S⊆V

{
|S| : G[S] satisfies Π

}
is NP-complete.
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It is straightforward that the statement of this theorem extends to the version

of the maximum weight Π problem (3.1). Some of the most well known instances of

(3.1) include the maximum weight clique problem and maximum weight independent

set problem.

Now we pose the question that served as motivation for the present endeavor:

What if the vertex weights wi are uncertain? In this case, extending the determinis-

tic formulation (3.1) into the stochastic domain is not straightforward and requires

additional considerations. Indeed, minimization of the random quantity that is rep-

resented by the sum of random weights in (3.1) is ill-posed in the context of decision

making under uncertainty that requires a deterministic optimal solution. Therefore,

the sum of stochastic weights in the objective has to be replaced with a statistical

functional that utilizes the distributional information about the weights’ uncertain-

ties. The traditional stochastic optimization approach, for example, involves seeking

the best “expected outcome”, which in this setting would translate into maximizing

the expected weight of an induced subgraph G[S]. It is easy to see, however, that max-

imization of the expected subgraph weight trivially reduces to the deterministic max-

imum weight Π formulation with expected vertex weights: E
(∑

i∈S wi
)

=
∑

i∈S Ewi.

In this work, we pursue a risk-averse approach and consider the problem of

finding the subgraph of G that satisfies property Π and has the lowest risk. Namely,

let Xi denote a stochastic variable that is associated with vertex i ∈ V and assume

that the joint distribution of vector XG = (X1, . . . , X|V |) is known. Assuming that

the random quantities Xi, i ∈ V , represent costs or losses, consider the problem of
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finding the minimum-risk subgraph in G with property Π, or the risk-averse maximum

weighted Π problem:

min
S⊆V

{
R(S; XG) : G[S] satisfies Π

}
. (3.2)

In formulation (3.2), the functional R(S; XG) quantifies the risk of the induced sub-

graph G[S] given the distributional information XG, and is undefined as yet.

By virtue of Section 1.2 we define the risk R(S; XG) of a subgraph G[S] in(3.2)

in the same context as risk measure ρ. This basic definition is also augmented the

properties (A1)-(A4) that are dictated by application. Then, given a risk measure ρ

that we additionally assume to be lower semi-continuous (l.s.c.), the risk R(S; XG)

of a subgraph of G induced on a set of vertices S ⊆ V (G) with uncertain vertex

weights Xi can be defined as an optimal value of the following stochastic programming

problem:

R(S; XG) = min

{
ρ

(∑
i∈S

uiXi

)
:
∑
i∈S

ui = 1, ui ≥ 0, i ∈ S
}
. (3.3)

Recall that function f : X 7→ R is l.s.c. if and only if the sets {X ∈ X : f(X) ≤ a} are

closed for all a ∈ R. Obviously, lower semi-continuity of risk measure ρ is necessary

for the minimization problem in (3.3) to be well-posed. In the sequel, it will be

implicitly assumed that the risk measure ρ in (3.3) is l.s.c.

The rationale behind definition (3.3) of subgraph risk function R(·) is that,

similarly to many “nice” risk measures, such as those discussed in Chapter 1, it allows

for risk reduction through diversification:
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Proposition 3.2. Given a graph G = (V,E) with stochastic weights Xi, i ∈ V , and

a l.s.c. risk measure ρ, the subgraph risk function R defined by (3.3) satisfies

R(S2; XG) ≤ R(S1; XG) for all S1 ⊆ S2. (3.4)

Proof. For S1 ⊆ S2, denote

u(k) ∈ arg min

{
ρ

(∑
i∈Sk

uiXi

)
:
∑
i∈Sk

ui = 1; ui ≥ 0, i ∈ Sk
}
, k = 1, 2.

Then, one immediately has

R(S2; XG) = ρ

(∑
i∈S2

u
(2)
i Xi

)
≤ ρ

(∑
i∈S1

u
(1)
i Xi +

∑
j∈S2\S1

0 ·Xj

)
= R(S1; XG).

due to lower semicontinuity of risk measure ρ. �

Note that the power of definition (3.3) via solution of a stochastic program-

ming problem is evidenced in the fact that the property (3.4) of risk reduction via

diversification holds for any l.s.c. risk measure ρ : X 7→ R. Secondly, property (3.4)

implies the following important observation regarding the optimal solution of the

risk-averse maximum weighted Π problem (3.2):

Corollary 3.3. The optimal solution of the risk-averse maximum weighted Π problem

(3.2) with R(S; XG) defined by (3.3) is a maximal Π-subgraph in G.

Recall that the same characterization of optimal solutions holds for the deterministic

maximum weight Π problem (3.1). This provides justification for calling the risk-

minimization problem (3.2) a “risk-averse maximum weighted subgraph problem”.
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In this respect, it is worth mentioning that the presented framework differs

from other recent studies that also utilized formally defined risk measures for quantify-

ing the risk in graphs, but relied on explicit maximization of the subgraph’s cardinality

or weight while requiring that its risk be bounded (see, e.g., [36, 62]):

max
S⊆V

{
|S| : Risk(S) ≤ c0, G[S] satisfies Π

}
.

Indeed, the proposed definition (3.3) of risk function R in the R-MWS problem

(3.2) implies that maximization of a solution’s cardinality is a consequence of risk

minimization via diversification.

Further properties of R(S; XG) depend on those of the risk measure ρ in

(3.3). The next proposition states that when the risk measure ρ is coherent, or at least

possesses the properties (A1), (A3), (A4) defined in Chapter 1, then the corresponding

subgraph risk function R(S; XG) satisfies properties analogous to (A1), (A3), (A4)

with respect to the stochastic weights vector XG.

Proposition 3.4. Let G = (V,E) be an undirected graph, and XG = (X1, . . . , X|V |),

and YG = (Y1, . . . , Y|V |) be vectors of stochastic weights whose components are defined

on the same linear space X . If the risk measure ρ in (3.3) is l.s.c. and satisfies axioms

(A1), (A3), and (A4) of coherency, then for any induced subgraph G[S] the subgraph

risk function R defined in (3.3) satisfies the following properties:

(G1) R(S; XG) ≤ R(S; YG) for all XG ≤ YG

(G2) R(S;λXG) = λR(S; XG) for all XG and λ > 0

(G3) R(S; XG + a1) = R(S; XG) + a for all a ∈ R
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where 1 is the vector of ones, and the vector inequality XG ≤ YG is interpreted

component-wise.

Proof. Consider, for example, property (G1). Denoting, as before,

uZ ∈ arg min

{
ρ

(∑
i∈S

uiZi

)
:
∑
i∈S

ui = 1; ui ≥ 0, i ∈ S
}
,

we have

R(S; XG) = ρ

(∑
i∈S

uXi Xi

)
≤ ρ

(∑
i∈S

uYi Xi

)
.

On the other hand, from Xi ≤ Yi it follows that

∑
i∈S

uYi Xi ≤
∑
i∈S

uYi Yi,

whence

ρ

(∑
i∈S

uYi Xi

)
≤ ρ

(∑
i∈S

uYi Yi

)
= R(S; YG).

Properties (G2) and (G3) are verified similarly. �

Observe that R(S; XG) does not obey the sub-additivity with respect to the

stochastic weights, i.e., in general

R(S; XG + YG) � R(S; XG) + R(S; YG).

With respect to the traditional risk measures ρ : X 7→ R, the failure to satisfy the sub-

additivity requirement (or, if positive homogeneity also does not hold, the convexity

requirement) implies that such a risk measure is ill fitting for risk reduction via diver-

sification. In other words, it is possible that diversification can result in an increased
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risk exposure, as measured by a non-subadditive (correspondingly, nonconvex) risk

measure ρ.

In the context of proposed risk function R for subgraphs, risk reduction via

diversification is already ascertained by (3.4), which, with respect to the problem of

finding a Π-subgraph with the smallest risk, ensures that adding new vertices to the

existing feasible solution that satisfies a hereditary property Π is always beneficial,

provided that Π is not violated by the addition of new vertices. Yet, under an addi-

tional assumption that the stochastic vertex weights have non-negative support, i.e.,

XG ≥ 0, the subgraph risk function R(S; XG) can be shown to be “set-subadditive”.

Namely, one has

Proposition 3.5. Let the stochastic vertex weights Xi, i ∈ V, of graph G = (V,E)

satisfy Xi ≥ 0, i ∈ V . Then, for any S1, S2 ⊆ V the subgraph risk function R(S; XG)

defined by (3.3) satisfies

R(S1 ∪ S2; XG) ≤ R(S1; XG) + R(S2; XG), (3.5)

provided that the risk measure ρ in (3.3) is l.s.c. and satisfies (A1) and (A2).

Proof. If ρ satisfies axioms (A1) and (A2), then ρ(X) ≥ 0 for any X ≥ 0. Immedi-

ately, one has R(S1 ∪ S2; XG) ≤ R(S1; XG) ≤ R(S1; XG) + R(S2; XG). �

Naturally, in the context of risk-averse maximum weighted Π problems where Π is

hereditary, one should also require that S1, S2, and S1 ∪ S2 satisfy Π.

Note that the assumption of nonnegative support for vertex weights Xi is anal-

ogous to the standard assumption of positive vertex weights in hereditary maximum
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weight subgraph problems such as the maximum clique and independent set problems

[7, 42].

3.3 Solution approaches for risk-averse maximum weighted subgraph

problems

In this section we consider a mathematical programming formulation for the

R-MWS Π problem (3.2), where the risk R(S) of induced subgraph G[S] is defined as

in (3.3), and propose a graph-based, or combinatorial branch-and-bound algorithm

that represents an extension of the well-known branch-and-bound schemes for the

maximum clique problem [17, 39, 40].

3.3.1 A mathematical programming formulation

Given a graph-theoretic property Π, let binary decision variables xi indicate

whether node i ∈ V belongs to a subset S, such that the induced subgraph G[S]

satisfies Π:

xi =


1, i ∈ S such that G[S] satisfies Π

0, otherwise.

Further, let ΠG(x) ≤ 0 denote the structural constraints such that for any x̃ ∈

{0, 1}|V |, ΠG(x̃) ≤ 0 if and only if G[S̃] satisfies Π, where S̃ = {i ∈ V : x̃i = 1}.

Then, the following proposition, which we give without proof, formalizes a mathemat-

ical programming representation for the risk-averse maximum weighted Π problem

(3.2) with risk R(S; XG) defined by (3.3) if the property Π is hereditary on induced

subgraphs:
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Proposition 3.6. Let G = (V,E) be an undirected graph with stochastic vertex

weights Xi, i ∈ V , and Π be a property hereditary on induced subgraphs. Then,

the R-MWS Π problem (3.2) with risk defined by (3.3) can equivalently be represented

as a mixed 0–1 programming problem

min ρ
(
u>XG

)
s. t. u>1 = 1

u ≤ x

ΠG(x) ≤ 0

x ∈ {0, 1}|V |, u ∈ R|V |+ .

(3.6)

When the property Π in (3.6) denotes graph completeness, one can choose, for

example, the well-known edge formulation of the maximum clique problem (see, e.g.,

[42]) to represent the structural constraints (3.6d) as

{
x ∈ {0, 1}|V | : ΠG(x) ≤ 0

}
=
{
x ∈ {0, 1}|V | : xi + xj ≤ 1 for all (i, j) ∈ E

}
,

where E represents the complement edges of graph G, whereby the mathematical

programming formulation of the R-MWS clique problem (3.2)–(3.3) takes the form

min ρ
(∑
i∈V

uiXi

)
s. t.

∑
i∈V

ui = 1

ui ≤ xi, i ∈ V

xi + xj ≤ 1, (i, j) ∈ E

xi ∈ {0, 1}, ui ≥ 0, i ∈ V.

(3.7)
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Formulations (3.6)-(3.7) allow for handling risk measures ρ whose representations

come in the form of mathematical programming problems, and can be solved with

appropriate (nonlinear) mixed integer programming solvers.

A combinatorial branch-and-bound algorithm that allows for exploiting the

structure of problems (3.6)-(3.7) imposed by the underlying graph G is described

next.

3.3.2 A graph-based branch-and-bound algorithm

The combinatorial branch-and-bound (BnB) algorithm works by navigating

between “levels” of the BnB tree until a subgraph of G that satisfies property Π and

is guaranteed to be of lowest risk as measured by (3.3) is found. The algorithm starts

at level ` = 0 with a partial solution Q := ∅, incumbent solution Q∗ := ∅, and a global

upper bound L∗ := +∞ on risk of Q∗. Throughout the algorithm, the partial solution

Q contains the vertices in V such that G[Q] has property Π, and set Q∗ induces, per

Corollary 3.3, a maximal Π-subgraph whose risk equals L∗ in G hitherto.

Within the current branch of the BnB tree, “level” ` is associated with the

candidate set C` of vertices such that any single vertex of C` can be added to the

current partial solution Q without violating property Π. Branching is performed by

removing a branching vertex q from C` and adding it to the partial solution Q. The

algorithm is initialized with C0 := V , and, as soon as the partial solution Q is updated

after branching at level `, the corresponding candidate set at level `+1 is constructed

by removing all vertices from C` whose inclusion in Q would break the property Π,
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i.e.,

C`+1 := {i ∈ C` : G[i ∪Q] satisfies Π}. (3.8)

As a result, immediately after branching at level ` the cardinality of partial solution

set Q is equal to |Q| = `+ 1.

The bounding step of the BnB algorithm involves evaluating the quality of the

solution that can be obtained by exploring further the subgraph induced by vertices

in Q∪C`+1. Observe that an exact approach of directly finding the Π-subgraph with

the lowest possible risk that is contained in G[Q ∪ C`+1] entails solving the following

restriction of problem (3.6):

R(Q ∪ C`+1; XG) = min ρ
(
u>XG

)
s. t. u>1 = 1

u ≤ x,

ΠG(x) ≤ 0,

x ∈ {0, 1}|V |, u ∈ R|V |+ ,

xi = 0, i ∈ V \ (Q ∪ C`+1).

(3.9)

As (3.9) is a (nonlinear) mixed 0–1 problem, solving it at every node of the BnB

tree is impractical. Instead, a lower bound on the value of R(Q ∪ C`+1; XG) given

by (3.9) can be computed. However, in contrast to the traditional mixed integer

programming approach of constructing a lower bound by relaxing the integrality

constraints, we formulate a lower bound problem by completely eliminating the 0-1
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variables xi along with the structural constraints:

R(Q ∪ C`+1; XG) ≥ L(Q ∪ C`+1) := min ρ
(∑
i∈V

uiXi

)
s. t.

∑
i∈V

ui = 1

ui = 0, i ∈ V \ (Q ∪ C`+1)

ui ≥ 0, i ∈ Q ∪ C`+1.

(3.10)

Observe that the structural constraints ΠG(x) ≤ 0 in problem (3.9) are satisfied

by variables {xi : i ∈ Q} (since G[Q] satisfies Π), as well as by variables {xi : i ∈

Q∪ j0} for each j0 ∈ C`+1 (since G[Q∪ j0] for each vertex j0 in C`+1 also satisfies Π,

per definition (3.8) of the candidate set C`+1). Hence, the corresponding structural

constraints are redundant in (3.9). On the other hand, the structural constraints are

not necessarily satisfied by variables {xi : i ∈ C`+1} and {xi : i ∈ Q ∪ C`+1}, since

G[C`+1] and G[Q ∪ C`+1] do not necessarily satisfy Π. Thus, (3.10) is a relaxation of

(3.9), and, by virtue of Proposition 3.2, the solution to (3.10) provides a lower bound

on the minimum risk achievable in any Π-subgraph induced on the union of Q with

any subset of C`+1, i.e.,

L(Q ∪ C`+1) ≤ R(Q ∪ C`+1; XG) ≤ R(Q ∪ S; XG) for any S ⊆ C`+1.

Observe that if `′ = ` + 1 represents the next level in the BnB tree, and Q′ is the

corresponding partial solution, then due to the definition (3.8) of candidate set one

has

(Q′ ∪ C`′+1) ⊆ (Q ∪ C`+1),
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whence the risk R(Q∪C`+1; XG) does not decrease as ` increases (or, in other words,

as new vertices are added to the partial solution Q and the algorithm proceeds to

deeper levels ` of the BnB tree). We next show that this observation is an effective

bounding criterion to obtain a Π-subgraph of lowest risk in G.

Depending on the computed value of L(Q ∪ C`+1), the algorithm branches

further or prunes/backtracks as follows. If L(Q ∪ C`+1) < L∗ and C`+1 6= ∅, the

algorithm proceeds to select a branching vertex at the next level `+1; for backtracking

purposes, the current branching vertex q at level ` is stored as q`. If L(Q∪C`+1) < L∗

and C`+1 = ∅, the subgraph induced by the partial solution Q represents a maximal

Π-subgraph in G and is declared as the new incumbent solution, Q∗ := Q, the global

upper bound on risk is updated L∗ := L(Q ∪ C`+1), and algorithm backtracks by

removing q from Q.

In the case of L(Q ∪ C`+1) ≥ L∗, the vertex q is removed from Q and the

corresponding branch of the BnB tree is fathomed due to the fact that there exists

no possibility of achieving a reduction in risk by sequential branching/refinement.

Further, if C` 6= ∅, another branching vertex is selected and removed from C` and

added to Q. Otherwise, if C` = ∅, the algorithm backtracks to level `−1 by removing

from Q the most recent branching vertex that was used at level `− 1, namely vertex

q`−1 (see Algorithm 3.1).

With regard to the branching rule, the observed computational performance

suggests that branching on a vertex q with the smallest value of ρ(Xq) or EXq is

most effective. To this end, vertices in the set C0 = V are pre-sorted during the
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initialization phase of the algorithm in descending order with respect to their risks

ρ(Xi) or expected values EXi, and then the last vertex in C` is selected for branching.

The outlined branch-and-bound procedure for R-MWS problems is formalized

as Algorithm 3.1.

Algorithm 3.1 Graph-based branch-and-bound method for R-MWSproblems

1. Initialize: ` := 0; C0 := V ;Q := ∅; Q∗ := ∅; L∗ :=∞
2. While ` ≥ 0 do

3. if C` 6= ∅ then

4. select a vertex q ∈ C`;
5. C` := C` \ q;
6. Q := Q ∪ q;
7. C`+1 := {i ∈ C` : i ∪Q satisfies Π};
8. solve L(Q ∪ C`+1);

9. if L(Q ∪ C`+1) < L∗ then

10. if C`+1 6= ∅ then

11. ql := q;

12. ` := `+ 1;

13. else

14. Q∗ := Q;

15. L∗ := L(Q ∪ C`+1);

16. Q := Q \ q;
17. else

18. Q := Q \ q;
19. else

20. Q := Q \ ql−1;
21. ` := `− 1;

22. return Q∗

Depending on the particular form of risk measure ρ, evaluation of the lower

bound by solving the relaxed problem (3.10) can be relatively expensive and be a ma-
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jor contributor to the overall computational cost of the proposed algorithm. However,

certain efficiencies in computing the lower bound value via (3.10) can be implemented

by taking into account the properties of the subgraph risk function R. Namely, if

at any point (Q ∪ C`+1) ⊆ (Q′ ∪ C ′), where Q′ and C ′ are a partial solution and a

candidate set for which the lower bound value L(Q′ ∪ C ′) is known to exceed the

current global upper bound, L(Q′ ∪ C ′) ≥ L∗, then L(Q ∪ C`+1) ≥ L(Q′ ∪ C ′) ≥ L∗

due to Proposition 3.2. The vertex q under consideration is then removed from Q and

the corresponding subproblem is fathomed. In practice, however, retaining the list of

sets (Q′ ∪ C ′) with L(Q′ ∪ C ′) ≥ L∗ and checking whether the current Q ∪ C`+1 is

a subset of some Q′ ∪ C ′ has proven computationally expensive for even moderately

sized problems, and is most notably exacerbated in graph topologies that contain a

large number of maximal Π-subgraphs (for example, when the graph density increases

in the context of risk averse maximum weighted clique problem). Therefore, a more

modest approach is considered where only the vertices from incumbent solutions Q∗

are retained and tested against unfathomed sets (Q ∪ C`+1).

3.4 Case studies: Risk-averse maximum weighted clique problem with

HMCR measures

In this section, we consider two cases of risk-averse maximum weighted clique

problems where loss function XG describes “propagation” of uncertainties within the

network. In the first case, risk exposures of the network vertices are “isolated” in the

sense that the loss (risk) profile at vertex i is determined only by the random factor
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Xi at that vertex. In the second case, it is assumed that risk exposure of vertex i

depends on its own loss profile Xi as well as losses of the adjacent vertices, thus the

overall risk of a selected subset S depends not only on the stochastic factors Xi at

individual vertices, but also on their exposure to neighboring vertices within S. This

assumption reflects risk interdependence observed in many applications like finance

and banking, where inter-agency lending heavily exposes counterparties.

In Sections 3.4.1 – 3.4.2 we present mixed integer programming formulations

of risk averse maximum clique problem with “isolated” and “neighbor-dependent”

stochastic effects, respectively. In Section 3.4.3 numerical simulations demonstrating

the solution performances of the proposed BnB method on problems with isolated

stochastic effects are conducted. In Section 3.4.4 the solution properties of problems

involving isolated and neighbor-dependent risk exposures are examined. We assume

that the losses Xi associated with vertices i ∈ V have a discrete joint distribution that

can be represented by scenario set Ω = {ω1, . . . , ωN}, such that Xik is the realization

of a stochastic factor Xi under scenario k ∈ N with the corresponding probabilities

P(ωk) = πk > 0, where π1 + · · ·+ πN = 1.

3.4.1 Case Study I: Isolated risk exposure

In this section we discuss the computational framework and conduct numerical

experiments demonstrating the computational performance of the proposed BnB al-

gorithm when solving the risk-averse maximum weighted clique problem (3.7), where
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the loss function was given by

XG[S] =
∑
i∈S

uiXi. (3.11)

Mathematical programming models containing HMCR measures in the ob-

jective or constraints can be formulated using p-order cone constraints (see Sec-

tion 2.3). Then, the corresponding formulation (3.7) with risk measure ρ(X) se-

lected as HMCRp,α(X) takes the form of a mixed integer p-order cone programming

(MIpOCP) problem:

min η + (1− α)−1t

s. t. t ≥ ‖(y1, . . . , yN)‖p

π
−1/p
k yk ≥

∑
i∈V

uiXik − η, k = 1, . . . , N

∑
i∈V

ui = 1

ui ≤ xi, i ∈ V

xi + xj ≤ 1, (i, j) ∈ E

xi ∈ {0, 1}, ui ≥ 0, i ∈ V ; yk ≥ 0, k = 1, . . . , N,

(3.12)

where Xik is the realization of the stochastic weight of vertex i ∈ V under scenario

k, k = 1, . . . , N , and the scenario probabilities P(X1 = X1k, . . . , XN = XNk) = πk.

Similarly, the lower bound problem (3.10) for the combinatorial branch-and-bound
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algorithm described in the previous section takes the form

L(Q ∪ C`+1) = min η + (1− α)−1t

s. t. t ≥ ‖y1, . . . , yN‖p

π
−1/p
k yk ≥

∑
i∈V

uiXik − η, k = 1, . . . , N

∑
i∈V

ui = 1

ui ≥ 0, i ∈ Q ∪ C`+1

ui = 0, i ∈ V \ (Q ∪ C`+1)

yk ≥ 0, k = 1, . . . , N.

(3.13)

Both the described polyhedral approximation approach and SOCP reformula-

tion approach presented in Section 2.3 have been employed in our implementation of

the combinatorial BnB algorithm of Section 3.3.2 in the cases when the lower bound

problem (3.13) is nonlinear, i.e., when p > 1.

Specifically, a polyhedral approximation of the lower bound problem (3.13)

was solved at each node of the BnB tree instead of the exact the nonlinear problem

(3.13) itself. This allows for a significant reduction in the computational cost of the

BnB method, since the warm-start capabilities of LP simplex solvers can be utilized

during repeated solving of the approximating LP problem.

The exact solution method that is based on the SOCP reformulation is em-

ployed for solving (3.13) once an incumbent solution is found, and the corresponding

optimal value is used to update the global upper bound L∗. Due to the fact that the
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described polyhedral approximation is an outer approximation, one has

LLP(Q ∪ C`+1) ≤ L(Q ∪ C`+1), (3.14)

where LLP(Q∪C`+1) is the optimal value given by the polyhedral (LP) approximation

of the lower bound problem. This implies that for any Q ∪ C`′+1 containing an

incumbent solution Q∗, the following holds

LLP(Q ∪ C`′+1) ≤ LLP(Q∗) ≤ L(Q∗) = L∗,

which guarantees the correctness of the BnB algorithm relying on polyhedral approxi-

mations. Note, however, that inequality (3.14) also implies that the use of polyhedral

approximations instead of the exact nonlinear formulation of the lower bound prob-

lem (3.13) allows for delayed pruning of “non-promising” branches of the BnB tree

in situations when

LLP(Q ∪ C`+1) < L∗ ≤ L(Q ∪ C`+1).

Still, in our experience, the computational savings due to the use of polyhedral ap-

proximations during the BnB procedure greatly outweigh the costs of possible delayed

pruning.

Note also that in the special case of p = 1, when ρ(X) = CVaRα(X), the lower

bound problem (3.13) is an LP problem and thus requires no polyhedral approxima-

tion or SOCP reformulation.

3.4.2 Case Study II: Neighbor-dependent risk exposures

Loss functions (3.11) only considered isolated stochastic effects such that the

uncertainties affecting one vertex did not impact neighboring vertices. However, as
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discussed above, many physical network structures frequently do exhibit shared risk

exposure. Thus, it is of interest to consider a form of loss function XG that reflects

this observation by allowing the risk exposure of a selected vertex i to depend on its

own loss profile Xi in addition to the loss profiles of the adjacent vertices included in

the selected subset S:

XG[S] =
∑
i∈S

(
uiXi +

∑
j∈S\i

θijujXj

)
, (3.15)

where the parameters θij denote the degree of exposure of vertex i to vertex j. It is

natural to assume that exposure θij is non-zero only if an edge exists between i and j:

(i, j) ∈ E. Although the meaning of θij ultimately depends on the model application,

for simplicity we assume that each vertex in V has uniform exposure to its neighbors:

θij =


1/|V |, if (i, j) ∈ E

0, otherwise.

Observe that (3.15) can equivalently be expressed in the form

XG[S] =
∑
i∈S

uiXi

(
1 +

∑
j∈S\i

θji

)
, (3.16)

that is similar to the form of loss function (3.11) with isolated exposures if one con-

siders the stochastic factor at vertex i to be defined as X̃i = Xi

(
1 +
∑

j∈S\i θji
)
. Note

that in the case when S represents a complete graph, risk profile X̃i is dependent on

the selected subset of vertices S, and, consequently, on the risk profiles of all neighbors

of i.

Introducing binary variables xi as before, the the risk-averse maximum clique
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problem with neighbor-dependent risk exposures can be formulated as

min ρ

(∑
i∈V

(
ui xiXi +

∑
j:(i,j)∈E

θij xi xj uj Xj

))
(3.17a)

s. t.
∑
i∈V

ui = 1 (3.17b)

ui ≤ xi, ∀ i ∈ V (3.17c)

xi + xj ≤ 1, ∀ (i, j) ∈ E (3.17d)

xi ∈ {0, 1}, ui ≥ 0, ∀ i ∈ V. (3.17e)

where constraint (3.17c) allows for replacing products uixi in the objective with just

ui. Also, selecting function ρ in the objective as the HMCR measure, problem (3.17)

reduces to a nonlinear 0–1 mixed integer stochastic optimization problem of the form

min η + (1− α)−1t (3.18a)

s. t. t ≥ ‖w1, . . . , wN‖p (3.18b)

π
−1/p
k wk ≥

∑
i∈V

Xik ui +
∑

j:(i,j)∈E

θijXjk uj xi

− η, ∀ k = 1, . . . , N (3.18c)

∑
i∈V

ui = 1 (3.18d)

ui ≤ xi, ∀ i ∈ V (3.18e)

xi + xj ≤ 1, ∀ (i, j) ∈ E (3.18f)

xi ∈ {0, 1}, ui ≥ 0, ∀ i ∈ V ; wk ≥ 0, k = 1, . . . , N. (3.18g)

The remaining non-linear terms uj xi in the constraint (3.18c) can be linearized by
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introduction of auxiliary variables γij as follows:

γij ≤ uj, ∀ i, j ∈ V

γij ≤ ui, ∀ i, j ∈ V

γij ≥ uj + xi − 1, ∀ i, j ∈ V

γij ≥ 0, ∀ i, j ∈ V.

The following mixed-integer linear formulation for problem (3.17) is then obtained:

min η + (1− α)−1t

s. t. t ≥ ‖w1, . . . , wN‖p

wk ≥
∑
i∈V

Xik ui +
∑

j:(i,j)∈E

θijXjk γij

− η, k = 1, . . . , N

∑
i∈V

ui = 1

ui ≤ xi, ∀ i ∈ V

xi + xj ≤ 1, ∀ (i, j) ∈ E

γij ≤ uj, ∀ i, j ∈ V

γij ≤ xi, ∀ i, j ∈ V

γij ≥ uj + xi − 1, ∀ i, j ∈ V

xi ∈ {0, 1}, ui ≥ 0, γij ≥ 0, ∀ i, j ∈ V ; wk ≥ 0, k = 1, . . . , N.

(3.19)

Observe that the additional complexity of formulation (3.19) in comparison to (3.12)

attributes to the fact that the risk exposure of a vertex in solution set S depends not

only on its own risk profile, but also on risk profiles of adjacent vertices included in

the solution set.
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3.4.3 Numerical experiments for Case Study I

Numerical studies of the risk-averse maximum weighted clique problem with

“isolated” risk exposure were conducted on randomly generated Erdös-Rényi graphs

[19] of orders |V | = 50, 100, 150, 200 and average densities d = 0.2, 0.5, and 0.8.

The stochastic weights of graphs’ vertices were generated as i.i.d. samples from the

uniform U [0, 1] distribution. In particular, we generated scenario sets with N =

50, 100, 200, 500, 1000 scenarios for each combination of graph order and density. The

risk measure ρ has been selected as an HMCR measure (1.7) with p = 1, 2, 3 and

α = 0.9.

The combinatorial branch-and-bound algorithm of Section 3.3.2 with the ad-

ditional specializations described above has been coded in C++, and we used the

CPLEX Simplex and Barrier solvers for solving the polyhedral approximations and

SOCP reformulations of the p-order cone programming lower bound problem (3.13),

respectively. In the case of p = 1, the CPLEX Simplex solver was used to solve the

lower bound problem directly.

The performance of the developed BnB method was compared with that of the

mathematical programming formulation (3.12) of the risk-averse maximum weighted

clique problem. The MIpOCP problem (3.12) was solved with CPLEX MIP solver in

the case of p = 1, and CPLEX MIP Barrier solver was applied to the SOCP version

of (3.12) in the case of p = 2 or SOCP reformulation of (3.12) in the case of p = 3.

The computations were ran on an Intel Xeon 3.30GHz PC with 128GB RAM,

and version 12.5 of the CPLEX solver in Windows 7 64-bit environment was used.
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The numerical experiments are summarized in Tables 3.1 – 3.2. All reported

running times were averaged over twenty instances and symbol “—” indicates that

the time limit of 7200 seconds was exceeded. Table 3.1 summarizes the computa-

tional times corresponding to the aforementioned problem configurations with a fixed

number of scenarios of N = 100. Observe that the BnB algorithm provides one to

two orders of magnitude advantage in running time over the CPLEX MIP solver for

all configurations, except that of p = 1 and d = 0.8. For the consecutive set of ex-

periments, Table 3.2 demonstrates the effect of variations in the scenario size N for

different graph orders and values of p while maintaining a constant average graph

density of d = 0.5. The specified edge probability was chosen due to the fact that

the size of the mathematical programming (3.12) formulation is density dependent.

Mainly, the number of structural constraints xi+xj ≤ 1, (i, j) ∈ E in (3.12) increases

as d decreases. The opposite relationship holds true for the BnB algorithm, as the

search space expands with the number of edges. Thus, a “fair” comparison between

the two solution methods can be made on graphs with density d = 0.5.

It follows from Tables 3.1 and 3.2 that the computational advantages of the

combinatorial BnB algorithm over the direct solution approach become more pro-

nounced (up to two orders of magnitude) with increase in p, i.e., as full formulation

(3.12) and the lower bound problem (3.13) become more difficult. Also of interest is

the fact that the BnB method often yields better solution times for problems with

p = 3 than p = 2. This is a consequence of a known property of the employed cutting-

plane algorithm for solving polyhedral approximations of p-order cone programming
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problems, which becomes more effective as p increases [30].

Table 3.1: Average computation times (in seconds) obtained by solving problem (3.12)
using the proposed BnB algorithm and CPLEX with risk measure (1.7) and scenarios
N = 100.

d = 0.2 d = 0.5 d = 0.8
p |V | BnB CPLEX BnB CPLEX BnB CPLEX
1 50 0.08 1.10 0.37 1.31 3.04 1.90

100 0.24 6.43 4.02 28.06 206.46 121.27
150 0.74 38.37 26.86 220.17 4065.16 2434.66
200 1.67 118.13 73.73 1074.93 — —

2 50 0.40 18.54 1.66 45.67 14.50 156.26
100 1.38 110.67 19.37 412.90 956.93 2555.77
150 3.37 629.38 124.99 2293.96 6154.76 —
200 3.68 2822.38 166.44 — — —

3 50 1.35 54.58 2.38 91.98 14.15 273.10
100 2.43 215.97 17.66 625.52 716.22 4644.90
150 4.41 927.03 102.28 3560.27 — —
200 7.24 3031.77 412.74 — — —

3.4.4 Numerical experiments for Case Study II

In this section we conduct numerical experiments demonstrating graph struc-

tural solution properties of problems (3.12) and (3.19). In particular, of specific

interest in the presented case study were the sizes of the optimal risk-averse cliques

produced by both formulations in comparison to the maximum clique size in the re-

spective graphs obtained without considering stochastic effects, i.e., as a solution of
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problem

max
∑
i∈V

xi

s. t. xi + xj ≤ 1, ∀ (i, j) ∈ E

xi ∈ {0, 1}, ∀ i ∈ V,

(3.20)

with variables xi defined as before.

For the purpose of examining the optimal solution properties resulting from

problems (3.12) and (3.19), we only consider risk measure ρ to be chosen as CVaR

(1.6), ρ(X) = CVaRα(X). Randomly generated Erdös-Rényi graphs and random

scenario data corresponding to each vertex i ∈ V were generated as previously. In

what follows, a total of twenty instances of problems (3.12), (3.19) and (3.20) have

been solved for each combination of graph size/scenario set, and all reported optimal

clique sizes were averaged accordingly. To demonstrate the effect of the degree of risk

aversion on the size of risk-averse maximum clique as given by the confidence level

α of the CVaR measure, we also solve (3.12) and report the average clique size for

various levels of α. We compared the average sizes of risk-averse maximum cliques

as given by (3.12) or (3.19) with the average size of deterministic maximum clique as

given by (3.20) over the same randomly generated graph instances. Finally, optimal

clique sizes in problems (3.12) and (3.19) for a fixed graph instance size with varying

levels of parameter α are compared.

Table 3.3 demonstrates averaged optimal clique sizes with respective com-

putation times for the discussed implementations of problems (3.12) and (3.20) for

randomly generated graphs of sizes |V | = 50, 75, 100, 150, 200 and average densities
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d = 0.25, 0.5, 0.75. In all instances, the number of scenarios (i.e., realizations of the

vector (X1, . . . , X|V |)) was fixed at 50, and the confidence level of the CVaR mea-

sure was chosen as α = 0.9. One of the observations that can be drawn from Table

3.3 is that the average sizes of risk-averse maximum cliques are smaller than the

corresponding sizes of risk-neutral (deterministic) maximum cliques.

Table 3.3: Average optimal clique sizes obtained by solving problems
(3.12) and (3.20) with risk measures (1.6).

d |V | N Clique size Risk-averse clique size
0.25 25 50 3.6 3.5

50 50 4.9 3.9
75 50 5.2 4.2
100 50 5.4 4.5
150 50 6.1 4.6
200 50 6.6 4.7

0.5 25 50 5.7 5.1
50 50 7.8 6.3
75 50 8.4 6.4
100 50 9.2 6.6
150 50 10.1 7.2
200 50 11 7.8

0.75 25 50 9.6 8
50 50 12.7 9.7
75 50 15.6 11.1
100 50 16.7 12.5
150 50 19.1 12.8
200 50 20.9 14.4

We next examine optimal subgraph sizes obtained by solving problem (3.12)

in relation to varying levels of parameter α (note that larger values of α correspond

to more risk-averse preferences) in the CVaR measure (1.6). We let α take values
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Figure 3.1: Average optimal clique sizes obtained by solving prob-
lem (3.12) at varying risk tolerances α using graphs with 150 vertices
and 50 scenarios (d = 0.50).

within the range [0.05, 0.95] at increments of 0.05 in randomly generated graphs with

150 vertices, an average density of d = 0.50 and 50 scenarios. Figure 3.1 establishes

a strong relation between α and average optimal subgraphs. Noteworthy are low α

levels (e.g. α = 0.05) which occasionally reduce the optimal subgraph to a single ver-

tex, confirming that lax risk requirements prevent appropriate, if any, diversification

among multiple vertices. Furthermore, a transition from low risk tolerance induc-

ing no diversification (α ≈ 0.05) towards effectual levels (α ≥ 0.1) expands optimal

clique sizes at high rates over interval α ∈ [0.05, 0.25], while consecutive restrictions

have a more moderate impact. This outcome is consistent with properties of coher-

ent risk measures, such as CVaR, which allow for efficient diversification due to the

subadditivity/convexity property.

The results shown in Figure 3.1 can be illustrated through financial settings,



www.manaraa.com

80

where lax risk constraints are commonly associated with little or no asset diversifi-

cation, whereas stricter requirements correspond to increased risk aversion leading

to improved diversification. In a network setting, specifically problem (3.12), we can

analogously express lacking diversification over vertices for insufficiently large α-levels

corresponding to low degree of risk aversion. Initial incremental increases in α are

reflected in steep clique size growth rates, with a dissipating effect as α→ 1.

In regard to neighbor-dependent exposure risk considerations, for construction

of problem (3.18) we impose θij = 1/|V | over all vertices i ∈ V and conduct com-

putational simulations for graphs of sizes |V | = 25, 50, 75 and average densities of

d = 0.25, 0.50. In each problem instance the distribution of uncertainties was mod-

eled using 50 scenarios and the confidence level α of the CVaR measure was set at

α = 0.9. Table 3.4 reports the resulting average clique sizes and corresponding com-

putation times when risk exposures of the vertices depend on the risk profiles of their

neighbors. Observe that optimal risk-averse clique sizes are significantly smaller on

average in comparison to the same instances in Table 3.3. Furthermore, in Figure 3.2

we demonstrate that problem (3.19) consistently requires higher levels of α to attain

similar optimal subgraph sizes.
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Table 3.4: Average optimal clique sizes obtained by solving problems
(3.19) and (3.20) with risk measures (1.6).

d |V | N Clique size Risk-averse clique size
0.25 25 50 3.6 3.1

50 50 4.9 3.3
75 50 5.2 3.9

0.5 25 50 5.7 4.2
50 50 7.8 4.8
75 50 8.4 6.1

Figure 3.2: Comparative optimal clique sizes at ranging risk toler-
ances α for problems (3.12) and (3.19) using a single graph with 50
vertices and 50 scenarios.
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3.5 Conclusions

We have considered a class R-MWS problems which entail finding a network

subgraph of minimum risk satisfying hereditary structural properties. A distinguish-

ing feature of the problem setting considered in this study is the assumption that

stochastic factors in the underlying networks are associated with vertices, as opposed

to the prevalent literature settings where uncertainties are attributed to network arcs.

We employ the HMCR measures as a rigorous framework for quantifying the distri-

butional information of the stochastic vertex weights. By means of diversification

properties of the introduced optimization-based risk function for measuring risk of

subgraphs, it was shown that the inclusion of additional vertices in a partial solution

promotes the minimization of risk; hence, optimal solutions to R-MWS problems are

maximal subgraphs. A combinatorial branch-and-bound algorithm utilizing the risk-

and graph-related aspects of the problem structure was developed and tested on a

special case of the risk-averse maximum clique problem.

Numerical experiments on randomly generated Erdös-Rényi graphs demon-

strate that the proposed algorithm may significantly reduce solution times relative

to an equivalent mathematical programming counterpart. Notably, when the desired

subgraph property defined a clique, improvements were observed for all the tested

graph configurations when using the HMCR measures with p = 2, 3, and for graphs

with edge probabilities of less than 0.8 when using an HMCR measure with p = 1.

Properties of optimal risk-averse stochastic weighted maximum cliques with “isolated”

and “neighbor-dependent” risk exposures were examined.



www.manaraa.com

83

CHAPTER 4
ON RISK-AVERSE WEIGHTED K-CLUB PROBLEMS

4.1 Introduction

In the previous chapter we addressed problems seeking subgraphs of minimum

risk that posses hereditary properties, and focused on particular instances that defined

property Π as a clique (complete-graph). In many practical applications, the require-

ment that the desired subgraph must be complete may, however, impose excessive

restrictions, and warrant some structural relaxation in terms of member connectivity.

For instance, rather than identifying a subset with all vertices pairwise adjacent, an

adjacency requirement based on a distance or degree threshold may suffice. As a

consequence, several clique relaxation models have been proposed in graph theory

literature. A comprehensive review on clique relaxation models is provided in [53].

In this work we focus on a specific model, the k-club [1], where subgraph mem-

bers may also be indirectly connected via at most k intermediary members. We adopt

this setting and extend the techniques introduced in Chapter 3 to address problems

seeking subgraphs of minimum risk that represent a k-club. An analogous frame-

work utilizing the information of stochastic vertex weights by means of coherent risk

measures is employed to define a risk-averse maximum weighted k-club (R-MWK)

problem as finding the lowest risk k-club in a network. As an illustrative example,

we focus on instances when k = 2 and utilize a mathematical programming for-

mulation for the maximum 2-club problem introduced in [10]. A branch-and-bound
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method for finding maximum k-clubs [41] is modified to accommodate the conditions

of R-MWK problems by bounding solutions in a coherent risk measure context. We

compare the solution performance of the proposed algorithm relative to an equivalent

mathematical programming counterpart problem for R-MWK problems when k = 2.

The remainder of the paper is organized as follows. In Section 4.2 we introduce

several clique relaxation models and examine the general representation of R-MWK

problems . Section 4.3 presents a mathematical programming formulation and a

combinatorial branch-and-bound method for R-MWK problems with k = 2. Finally,

Section 4.4 furnishes numerical studies demonstrating the computational performance

of the developed branch-and-bound method on problems where risk is quantified using

higher-moment coherent risk measures.

4.2 Risk-averse stochastic maximum k-club problem

As previously, let G = (V,E) be a graph where G[S] represents the subgraph

of G induced by S such that any pair of vertices (i, j) share an edge in S only if (i, j)

is an edge in G. To ease notation, define Q as a desired property which the induced

graph G[S] must satisfy. The present case considers the instances when Q represents

a certain relaxation of the completeness property, such that a subgraph with property

Q represents a clique relaxation.

Depending on the characteristic of a complete graph that is relaxed, the clique

relaxations can be categorized into density-based, degree-based and diameter-based

relaxations. The density of a graph G = (V,E) is defined as a ratio D(G) = |E|/
(|V |

2

)
,
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where the denominator represents the number of edges in a complete graph with |V |

vertices. Evidently, a complete graph has a density of 1. Then, for a fixed γ ∈ (0, 1),

graph G is called a γ-quasi-clique [55], if its density is at least γ:

D(G) ≥ γ, or, equivalently, |E| ≥ γ

(
|V |
2

)
.

The γ-quasi-clique is, therefore, a density-based relaxation of the clique concept,

and as such is different from the k-clique, which is one of the diameter-based clique

relaxations. Namely, let dG(i, j) be the distance between nodes i, j ∈ V , measured as

the number of edges in the shortest path between i and j in G. Then, the subgraph

G[S] induced by a subset of nodes S ⊂ V of the graph G is called a k-clique if

max
i,j∈S

dG(i, j) = k.

Note that the definition of the k-clique does not require that the shortest path between

i, j ∈ S belong to G[S]. If one requires that the shortest path between any two vertices

i, j in S belong to the induced subgraph G[S], then the subset S such that

max
i,j∈S

dG[S](i, j) = k, (4.1)

is called a k-club. Note that a k-club is also a k-clique, while the inverse is not true in

general. The shortest path connecting two vertices in a clique is 1, thus 1-clique and

1-club are cliques. For a vertex i ∈ V , its degree degG(i) is defined as the number of

adjacent vertices: degG(i) = |{j ∈ V : (i, j) ∈ E}|. A degree-based clique relaxation,

known as k-plex, is defined as a subset S of V such that the degree of each vertex in

the induced subgraph G[S] is at least |S| − k [9]:

degG[S](i) ≥ |S| − k for all i ∈ S,
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(observe that the degree of each vertex in a clique of size n is equal to n− 1).

In what follows, we consider the case when Q represents a distance-based

relaxation of the clique model in the sense of the k-club definition (4.1) when k ≥ 2.

Throughout the remainder of this study we let property QG[S] define a k-club as

QG[S] = {S ⊆ V | ∀i, j ∈ S : dG[S](i, j) ≤ k}. (4.2)

When seeking a subgraph S with the maximum additive vertex weights, wi >

0, that satisfies property QG[S], a maximum weight k-club problem can take the form

max
S⊆V

{∑
i∈S

wi : G[S] satisfies QG[S]

}
. (4.3)

Clearly, the optimal subgraph G[S] in problem (4.3) will be maximal, but not neces-

sarily the maximum subgraph with property QG[S]. We next extend the techniques

introduced in Chapter 3 to propose problems seeking subgraphs of minimum-risk that

conform to property Q,

min
S⊆V

{
R(S; XG) : G[S] satisfies Q

}
, (4.4)

and, particularly, where Q represents a k-club.

4.3 Solution approaches for risk-averse maximum weighted 2-club

problems

In this section we consider a mathematical programming formulation for the

R-MWK problem when k = 2, and where the risk R(S) of induced subgraph G[S]

is defined by (3.3). Also, we propose a combinatorial branch-and-bound algorithm



www.manaraa.com

87

utilizing the solution space processing principals for finding maximum k-clubs intro-

duced by Pajouh and Balasundaram [41].

4.3.1 A mathematical programming formulation

When the property Q denotes a 2-club, one can choose the edge formulation

of the maximum 2-club problem proposed by Balasundaram et al. [10], whereby the

mathematical programming formulation of the R-MWS problem with k = 2 takes the

form

min ρ
(∑
i∈V

uiXi

)
s. t.

∑
i∈V

ui = 1

ui ≤ xi, i ∈ V

xi + xj −
∑

l∈N∩(i,j)

xl ≤ 1, (i, j) ∈ E

xi ∈ {0, 1}, ui ≥ 0, i ∈ V,

(4.5)

where E represents the complement edges of graph G, and N ∩(i, j) denotes the

vertices that are both adjacent to vertex i and vertex j. A combinatorial branch-and-

bound algorithm for solving R-MWK problems is described next.

4.3.2 A graph-based branch-and-bound algorithm

The following BnB algorithm for solving R-MWK problems entails efficient

processing of solution space by traversing “levels” of the BnB tree until a subgraph

G[S] that represents a maximal 2-club of minimum risk in G as measured by (3.3) is

found. The algorithm begins at level ` = 0 with a partial solution Q := ∅, incumbent
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solution Q∗ := ∅, and an upper bound on risk L∗ := +∞, where Q consists of the

vertices of the induced subgraph with property Q, and Q∗ contains vertices corre-

sponding to a maximal Q-subgraph whose risk equals L∗ in G. A set of candidate

vertices C` is maintained at each level `, from which a certain branching vertex q is

selected and added to the partial solution Q, or simply deleted from set C` without

being added to Q. In order to ensure that the proper vertices are removed from

Q when the algorithm backtracks between levels of the BnB tree, we introduce set

F := ∅ to account for the levels at which nodes were created to delete a vertex q from

C`.

Due to the distance-based properties of k-clubs, considerations are warranted

upon transferring or deleting a vertex q from candidate set C`, as the structural

integrity of corresponding to the graph induced by Q and the candidate set at the

subsequent level C`+1 may be affected. Thus, the removal of q from C` to add to Q,

and the deletion of q from C` without adding it to Q are considered independently

via the construction of two BnB tree nodes for any given current node at level `.

The first node is created to include q in Q, while the other to delete q from C`. The

necessary structural properties of Q and C`+1 at each node are described next.

Consider a k-clique in graph G as a subset S that satisfies

{S ⊆ V | ∀i, j ∈ S : dG(i, j) ≤ k},

and observe that any k-club in G also satisfies the properties of a k-clique, while a

k-clique is not necessarily a k-club for k ≥ 2. Further, both reduces to a complete

graph in the case of k = 1. By this notion, an incumbent solution Q∗ defines a k-club
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if the following conditions are maintained for all graphs G[Q ∪ C`+1]:

(C1) Q is a k-clique in G[Q ∪ C`+1]

(C2) dG[Q∪C`+1](i, j) ≤ k, ∀i ∈ Q, ∀j ∈ C`+1

The algorithm is then initialized with C0 := V . Whenever a vertex q is

selected from C` and added to Q, the candidate set at level `+ 1 must be accordingly

constructed by removing all vertices from C` whose distances to vertex q are larger

than k,

C`+1 := {j ∈ C` : dG[Q∪C`](q, j) ≤ k}.

In situations when the deleted vertices serve as intermediaries, their removal from

C` may, however, impose pairwise distance violations among the vertices in Q ∪ q

with respect to condition (C2). In other words, after removing vertex q from C`, the

distance between a pair of vertices (i, j) ∈ Q follows dG[Q∪C`+1](i, j) > k. In such cases,

the corresponding vertex of the BnB tree is fathomed and the algorithm backtracks

to level `. If a BnB tree node is created to delete vertex q, the candidate set C`+1

is likewise constructed by eliminating vertices that violate (C2). If the removal of

vertices from the candidate sets in either of the above cases results in a violation of

(C1), then the corresponding BnB node is fathomed.

Subsequent steps of evaluating the quality of the solution via problem (3.10)

and the processing of search space remain unchanged with regard to the algorithm

described in Section 3.3.2. The outlined BnB for R-MWK problems is formalized in

Algorithm 4.1.
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Algorithm 4.1 Graph-based branch-and-bound method for R-MWK

1. Initialize: ` := 0; C0 := V ;Q := ∅; Q∗ := ∅; L∗ :=∞;F := ∅;
2. While (not STOP) do
3. if C` 6= ∅ then
4. select a vertex q ∈ C`;
5. C` := C` \ q;
6. Q := Q ∪ q;
7. C`+1 := {i ∈ C` : dG[Q∪C`](q, i) ≤ k ∀i ∈ C`};
8. if Q is a k-clique in G[Q ∪ C`+1] then
9. solve L(Q ∪ C`+1);

10. if L(Q ∪ C`+1) < L∗ then
11. if C`+1 6= ∅ then
12. ` := ` + 1;
13. else
14. Q∗ := Q;
15. L∗ := L(Q ∪ C`+1);
16. Q := Q \ q;
17. if ` /∈ F then
18. Q := Q \ q
19. C`+1 := {j ∈ C` : dG[Q∪C`](i, j) ≤ k, ∀i ∈ Q, };
20. if C`+1 6= ∅ then
21. if Q is a k-clique in G[Q ∪ C`+1] then
22. F := F ∪ `;
23. go to step 9;
24. else
25. go to step 3;
26. else
27. F := F \ `;
28. else
29. if ` /∈ F then
30. Q := Q \ q;
31. else
32. F := F \ `;
33. else
34. Q := Q \ q;
35. C`+1 := {j ∈ C` : dG[Q∪C`](i, j) ≤ k, ∀i ∈ Q, };
36. if Q is a k-clique in G[Q ∪ C`+1] then
37. F := F ∪ l;
38. go to step 9;
39. else
40. go to step 3;
41. else
42. ` := `− 1;
43. if ` = −1 then
44. STOP
45. if ` /∈ F then
46. Q := Q \ q;
47. else
48. F := F \ l;
49. return Q∗
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4.4 Case study: Risk-averse maximum weighted 2-club problem with

HMCR measures

We consider a R-MWK problem with k = 2 where random factors Xi at vertex

i ∈ V are isolated in the sense that its loss profile is independent of stochastic factors

at other vertices. Assuming that the loss function XG is defined by expression (3.11)

and is quantified using the HMCR measure (1.7), the mathematical programming

formulation (4.5) with risk measure ρ(X) as HMCRp,α(X) takes the form of a mixed

integer p-order cone programming problem:

min η + (1− α)−1t

s. t. t ≥ ‖(w1, . . . , wN)‖p

π
−1/p
k wk ≥

∑
i∈V

uiXik − η, k = 1, . . . , N

∑
i∈V

ui = 1

ui ≤ xi, i ∈ V

xi + xj −
∑

l∈N∩(i,j)

xl ≤ 1, (i, j) ∈ E

xi ∈ {0, 1}, ui ≥ 0, i ∈ V ; wk ≥ 0, k = 1, . . . , N.

(4.6)

Observe that upon exclusion of the graph structural inequalities and variables, an

equivalent lower bounding form to problem (3.13) is obtained for implementation in

the combinatorial BnB algorithm.
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4.4.1 Numerical experiments and results

Numerical studies of the risk-averse maximum weighted 2-club problem were

conducted on randomly generated Erdös-Rényi graphs of orders |V | = 25, 50, 100

with average densities d = 0.0125, 0.025, 0.05, 0.1, 0.15. The specified edge proba-

bilities were chosen due to empirical observations indicating that graphs of order

|V | ≥ 50 commonly reduces to a 2-club when the density is in the range [0.15,0.25].

The stochastic weights of graphs’ vertices were generated as i.i.d. samples from the

uniform U [−0.5, 0.5] distribution. Scenario sets with N = 100 were generated for

each combination of graph order and density. The HMCR risk measure (1.7) with

p = 1, 2, 3 and α = 0.9 was used.

The BnB algorithm of Section 4.3 has been coded in C++, and we used the

CPLEX Simplex and Barrier solvers for solving the polyhedral approximations and

SOCP reformulations of the p-order cone programming lower bound problem (3.13),

respectively. In the case of p = 1, the CPLEX Simplex solver was used to solve the

lower bound problem directly.

The computational performance of the mathematical programming model (4.6)

was compared with that of developed BnB algorithm. In the case of p = 1, problem

(4.6) was solved with CPLEX MIP solver. The CPLEX MIP Barrier solver was used

for the SOCP version in the case of p = 2, and using the SOCP reformulation in the

case of p = 3.

The experimental results are furnished at the end of this chapter in Table 4.1,

where computation times were averaged over five instances and the symbol “—”
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indicates that the time limit of 7200 seconds was exceeded. Observe that the BnB

algorithm outperforms the CPLEX MIP solver over all the listed graph configurations,

and one to two orders of magnitude in performance improvements were witnesses for

the majority of instances. Similarly to the results in the previous chapter, the relative

performances also becomes more pronounces with an increase in p.

4.5 Conclusions

We have considered a R-MWK problems which entail finding a k-club of min-

imum risk in a graph. HMCR risk measures were utilized for quantifying the distri-

butional information of the stochastic factors associated with vertex weights. It was

shown that the optimal solutions to R-MWK problems are maximal k-clubs. A com-

binatorial BnB solution algorithm was developed and tested on a special case of the

R-MWK problem when k = 2. Numerical experiments on randomly generated graphs

of various configurations suggest that the proposed BnB algorithm significantly re-

duces solution times in comparison with the mathematical programming model solved

using the CPLEX MIP solver.
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CHAPTER 5
TWO-STAGE STOCHASTIC RECOURSE MAXIMUM Π PROBLEM

5.1 Introduction

In Chapters 3 – 4 we addressed network problems with topologically exogenous

information in the form of uncertainties induced by stochastic factors associated with

network vertices that were structurally unvarying. In many application, however, it

may also be of interest to examine conditions that admit topological changes to the

network itself. For example, disruptions in transportation and telecommunications

systems are common events that influence structural integrity, thereby merit consid-

eration in network design. The corresponding uncertainty in such cases could, for

example, be defined as the failure (or construction) of links between vertices within

a certain time period.

A popular class of problems used for modeling temporal uncertainty in math-

ematical programming are multi-stage stochastic recourse problems [12, 43]. They

involve making anticipatory decisions without prior knowledge about the realizations

of future uncertainties, and taking recourse actions during latter stages. A two-stage

stochastic recourse problem entails a first stage decision followed by second stage

“corrective” actions after the realizations have materialized. The principal logic un-

derlying such problems is to make decisions while considering future events, and

making adjustments after they become known with the intention of minimizing the

total cost associated with the decisions made during both stages.
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In this regard, we consider a class of two-stage stochastic graph recourse prob-

lems that admit uncertainties induced by stochastic factors affecting network connec-

tivity between decision stages (e.g. see [14, 35] ). Particularly, we develop a stochastic

recourse framework that seeks to maximize the expected size of a subgraph with some

predefined heredity property Π under the assumption of instability among the edges

between decision stages. Namely, a subset of vertices conforming to the desired graph

property is selected in the first stage, after which scenario realizations in the form of

edge connectivity disruptions arise. Then, a second stage recourse action is taken to

“repair” the subset selected in the first stage by adding or removing vertices in order

to ascertain its structural property Π in each scenario.

In the next sections we define and formalize a mathematical programming

model of the described two-stage stochastic graph recourse problem and introduce a

corresponding exact branch-and-bound solution criteria that leverages on the algo-

rithmic efficiencies relative to hereditary graphs. In continuation of the descriptive

formulations furnished in previous chapters, we let the structural graph property Π

represent a complete graph and tailor the solution technique accordingly.

5.2 Two-stage stochastic recourse maximum Π problem

In order to extend the above description onto the stochastic programming

framework, we next present a generalization of a classical two-stage linear stochastic
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recourse problem of form:

min c>x + E[P (x, ξ(ω))] (5.1a)

s. t. Ax = b (5.1b)

x ≥ 0, (5.1c)

where vector c represents the first stage costs and vector x corresponds to decisions

that are made before the observing stochastic parameters ξ. The function P (x, ξ(ω))

measures the value of the second stage recourse decision y(ω) in event ω ∈ Ω,

P (x, ξ(ω)) = min q>(ω)y(ω) (5.2a)

s. t. W(ω)y(ω) = h(ω)−T(ω)x (5.2b)

y(ω)≥ 0. (5.2c)

The parameter matrices W(ω), T(ω) and vectors q(ω), h(ω) become apparent once

ω is witnessed, and decisions y(ω) are taken on account of the first stage decision

x. Hence, the recourse function E[P (x, ξ(ω))] produces the average value (cost) of

the actions taken in events {ω1, . . . , ωN} ∈ Ω for a given x. For purposes of the

forthcoming extension of problems (5.1)–(5.2) a 0-1 integer restriction is imposed on

the decision variables in x and y(ω).

As defined above, G = (V,E) represents an undirected graph where G[S]

denotes the subgraph of G induced by S. The present work emphasizes a two-stage

stochastic recourse framework for finding graphs conforming to a hereditary property

Π during both decision stages. Finding subgraphs of maximum cardinality with

hereditary properties composes an important class of graph theoretical problems,
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also known as maximum Π problems:

max
S⊆V

{∑
i∈S

xi : G[S] satisfies Π
}
, (5.3)

where binary decision variables xi indicate whether a vertex i ∈ V belongs to a subset

S ⊆ V , such that the induced subgraph G[S] satisfies Π.

A particular drawback of problem (5.3) is the absence of stochastic considera-

tions regrading topological changes of the network, which, among others, is a common

concern in many real-life applications. To this end, we consider uncertainty in the

form of variation in vertex connectivity between decision stages of problem (5.1)–

(5.2), and assume that a subset S ⊆ V is selected from graph G0 in the first stage,

such that the induced subgraph G0[S] satisfies property Π. Then, stochastic fac-

tors are observed in the form of scenarios G = [G1(V,E1), . . . , GN(V,EN)], where

Gk = Gk(V,Ek) are realizations of graphs with a corresponding sets of edges Ek in

scenarios k = 1, . . . , N . Assuming that ∆+
k ⊆ V \S and ∆−k ⊆ S represent the subsets

of vertices that are added and removed from S in scenario k, respectively, the second

stage recourse establishes that the induced graphs Gk[Sk] of set Sk := (S \∆−k )∪∆+
k

satisfy Π for k ∈ N . The corresponding second stage binary decision variables for

scenario k are given by

yik =


1, i ∈ Sk such that Gk[Sk] satisfies Π

0, otherwise.

Let ΠGk
(z) ≤ 0 represents the structural constraints such that for any z̃ ∈

{0, 1}|V |, ΠGk
(z̃) ≤ 0 if and only if G[S̃] satisfies Π, where S̃ = {i ∈ V : z̃i = 1}.
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Then, by virtue of (5.1) and (5.2), the two-stage stochastic recourse maximum Π

problem takes the form

max 1>x + E[P (x,G)] (5.4a)

s. t. ΠG0(x) ≤ 0 (5.4b)

x ∈ {0, 1}|V |, (5.4c)

and

P (x,Gk) = max 1>yk (5.5a)

s. t. ΠGk
(yk) ≤ 0 (5.5b)

|∆+
k |+ |∆

−
k | ≤M (5.5c)

yk ∈ {0, 1}|V |, (5.5d)

where the budget parameter M restricts the number of vertices that can be added

and removed within scenario k.

If the property Π in (5.4) and (5.5) defines graph completeness, the edge

formulation is once again selected to represent the structural constraints (5.4b) and

(5.5b) during both decision stages,

{
z ∈ {0, 1}|V | : ΠG(z) ≤ 0

}
=
{
z ∈ {0, 1}|V | : zi + zj ≤ 1 for all (i, j) ∈ E

}
,

Then, given the probability of each scenario πk such that
∑

k∈N πk = 1, the two-

stage stochastic recourse maximum clique problem admits the following 0-1 integer
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programming form:

max
∑
i∈V

xi +
∑
k∈N

πk

(∑
i∈V

yik

)
(5.6a)

s. t. xi + xj ≤ 1, (i, j) ∈ E (5.6b)

yik + yjk ≤ 1, (i, j) ∈ E, k = 1, . . . , N (5.6c)∑
i∈V

|xi − yik| ≤M, k = 1, . . . , N (5.6d)

xi ∈ {0, 1}, yik ∈ {0, 1} i ∈ V, k = 1, . . . , N. (5.6e)

In what follows we demonstrate that this model may be solved using only graph-based

BnB techniques and independent of optimization software packages. Also, observe

that in constraint (5.6d) the costs of maintaining a vertex i ∈ V cancels if it is se-

lected in both stages, and that the budget M is constant among all the scenarios

k = 1, . . . , N . It would, however, be straightforward to enhance this simplistic as-

sumption by imposing nonuniform cost structures and budgetary restrictions while

maintaining validity of the forthcoming algorithmic methodology via minor corre-

sponding adjustments.

5.3 A combinatorial branch-and-bound technique for solving the

two-stage stochastic recourse maximum clique problem

In this section we consider an exact graph-based BnB algorithm for solving

problems (5.4) and (5.5) that extends the algorithmic framework proposed for deter-

ministic maximum clique problems [39, 40, 42]. Particularly, significant emphasis

was placed on developing a two-stage stochastic recourse criteria utilizing the notions
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of the well-known BnB algorithm introduced by Tomita et al. [51, 52], where partial

graph solutions are augmented by selecting vertices from independent candidate set

partitions, also know as numbering or coloring classes. Namely, the current implemen-

tation considers two separate algorithms working in tandem to solve problems (5.4)

and (5.5), where a numbering- and budgetary-based bounding procedure for eval-

uating the solution qualities of the former is imposed, while the solution space of

the latter is efficiently processed with regard to the structural and budgetary restric-

tions (5.5b)–(5.5c), respectively. Although the forthcoming technique was specifically

tailored for solving problem (5.6), we emphasize that generalizations for any heredi-

tary property Π are admitted, provided there exists a corresponding property-specific

bounding criteria (described below).

5.3.1 First stage branch-and-bound

The first stage BnB algorithm begins at level ` = 0 with partial solution Q :=

∅, current objective value in (5.4) Z := 0, incumbent solutionQ∗ := ∅ and its objective

value Z∗ := 0. Throughout the algorithm the partial solution Q contains the vertices

in V such that G0[Q] has property Π. At each node of the BnB tree, a candidate set

C` of vertices is maintained from which any single vertex is added to augment the

partial solution Q without violating property Π. The algorithm is initialized with

C0 := V and once a branching vertex q ∈ C` is selected the corresponding candidate

set at level `+1 is constructed by eliminating all the vertices from C` whose inclusion

in Q would violate the property Π. Thus, the cardinality of partial solution set Q is
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equal to |Q| = `+ 1.

Bounding of the current solution Q involves determining the best-case solution

that can be obtained by exploring further the subgraph induced by vertices in Q ∪

C`. To this end, we utilize a numbering algorithm [51] to estimate the maximum

achievable Π-subgraph from consecutive branching. Namely, the vertices are first

sorted in degree descending order and a minimum positive integer No[p] is assigned to

each vertex p ∈ C`+1 such that No[p] 6= No[s] if vertices p and s are connected by and

edge, i.e., (p, s) ∈ E. Thus, vertices in a single number class No[·] (i.e., vertices with

the same assigned number N [·]) form an independent set where no two vertices within

that class share an edge. The size of the maximum possible clique stemming from the

vertices in the candidate set, υ(C`), is then given by υ(C`) ≤ max{No[p] : p ∈ C`}.

An upper bound on a feasible first stage solution to problem (5.6) may then be

expressed as

|Q|+max{No[p] : p ∈ C`}+ |Q|+M ≤ Q∗, (5.7)

which, if satisfied, eliminates the necessity of further exploring the corresponding

search space, and vertex q is removed from the current solution Q. If it is not

satisfied, then the algorithm branches further by selecting the vertex q ∈ C` such

that No[q] = max{No[p] : p ∈ C`}. Notice that the term |Q| + M in (5.7) accounts

for the potential contribution of the recourse action in the optimal value of (5.6) by

assuming that if no vertices are removed from the first stage subgraph during the

second stage decisions, then M vertices can be added within the budget.

Given a first stage solution Q where x := {i ∈ V [G0] : xi = 1}, the second
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stage problems Pk(x,Gk), k = 1, . . . , N are then solved using the method described

in Algorithm 5.2 (discussed below). Two situations may arise when solving P (x,Gk),

k ∈ N . First, if any problem P (x,Gk) is infeasible for solution Q, the recourse

function is likewise infeasible, in which case vertex q is removed from Q and the

algorithm backtracks. Otherwise, the recourse function is feasible and the current

objective value in Problem (5.4) is updated as Z = |Q| + E[P (x,G)]. Next, the

incumbent objective value Z∗ is replaced by Z if Z∗ < Z. Finally, if the candidate

set C`+1 6= ∅, then the algorithm branches and the vertex numbers No[p] are updated

accordingly. The described first stage procedure is formalized in Algorithm 5.1.

5.3.2 Second stage branch-and-bound

The procedure for solving the second stage problems P (x,Gk), k = 1, . . . , N

is identical to the first stage technique in terms of augmenting the subgraph solution

with vertices from candidate sets that individually would satisfy the property Π.

A key difference, however, pertains to efficient search space processing via bounding,

which incorporates budgetary restrictions associated with constraint (5.6c) as opposed

to a vertex numbering criteria.

For notation clarity let the current second stage and incumbent solution be

denoted by Qk and Q∗k, respectively, and r ∈ Ck
` represent the branching vertex. As

noted previously, once a vertex r is selected and added to the current solution Qk,

the candidate set at the next level Ck
`+1 is created. Given the first stage solution Q

and the current second stage solution Qk, the left-hand-side of constraint (5.6c) is



www.manaraa.com

104

Algorithm 5.1 First stage graph-based branch-and-bound method

1. Initialize: ` := 0; C0 := V ;Q := ∅; Q∗ := ∅; Z = Z∗ = 0;M
2. While (not STOP) do
3. if C` 6= ∅ then
4. select a vertex q ∈ C`;
5. C` := C` \ q;
6. if |Q|+max{No[p] : p ∈ C`}+ |Q|+M > Q∗ then
7. Q := Q ∪ q;
8. Z = |Q|;
9. C`+1 := {i ∈ C` : i ∪Q satisfies Π};

10. for k ∈ N do
11. x := {i ∈ Q};
12. solve Pk(x,Gk);
13. if Pk(x,Gk) infeasible then
14. Q := Q \ q;
15. goto Step 3;
16. else
17. Z = Z + E[Pk (x,G)];
18. if Z > Z∗ then
19. Z∗ := Z;
20. if C`+1 6= ∅ then
21. ` := `+ 1;
22. Find {No[p] : p ∈ C`};
23. else
24. Q := Q \ q;
25. else
26. if C`+1 6= ∅ then
27. ` := `+ 1;
28. Find {No[p] : p ∈ C`};
29. else
30. Q := Q \ q;
31. else
32. ` := `− 1;
33. if ` = −1 then
34. STOP
35. Q := Q \ q;
36. return Z∗
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computed as A =
∑

i∈V |xi − yik|, where yik = 1 if i ∈ Qk. Observe that the number

of vertices in Ck
l+1 which can reduce A is given by B = |x∩Ck

`+1|. Thus, if A−B > M ,

then a violation in restriction (5.6c) exists and the current branch corresponding to

vertex r is fathomed. On the other hand, several considerations are warranted when

A − B ≤ M . First, if A > M , then the algorithm branches as condition (5.6c) may

potentially be satisfied via the vertices in Ck
l+1. Second, if A = M and B = 0, then

adding more vertices to Qk will violate constraint (5.6c). Hence, Qk is compared

against Q∗k and if |Qk| > |Q∗k|, then Q∗k := Qk, and the algorithm backtracks. Third,

if A ≤ M , then (5.6c) is satisfied via vertices in Qk, and, consequently, Qk replaces

Q∗k if |Qk| > |Q∗k|. In this case, if the candidate set Ck
`+1 = ∅, then the algorithm

backtracks, whereas, if Ck
`+1 6= ∅, then a new branching vertex r ∈ Ck

`+1 is selected

and it proceeds to level l = l+ 1. Algorithm (5.2) outlines the described second stage

solution technique.

5.4 Numerical experiments and results

Numerical studies on the two-stage stochastic recourse maximum clique prob-

lem (5.6) were conducted on randomly generated Erdös-Rényi graphs of orders |V | =

20, 25, 30, 35, 40; average densities of d = 0.1, 0.3, 0.5, 0.7; and scenario sets N =

5, 10, 15, 20, 25, 30, 35, 40. All tested graph instance-specific configurations regarding

|V |, d and N were maintained constant during both decision stages in problem (5.6).

Budgetary restrictions M = dε|V |e were also examined for each graph instance, where

ε = 0.1, 0.15 and 0.2.
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Algorithm 5.2 Second stage graph-based branch-and-bound method

1. Initialize: x := {i ∈ V [G0] : xi = 1}; ` := 0;Ck
0 := {V \ x,x};Qk := ∅; Q∗k :=

∅
2. While (not STOP) do
3. if Ck

` 6= ∅ then
4. select a vertex r ∈ Ck

` ;
5. Ck

` := Ck
` \ r;

6. Qk := Qk ∪ r;
7. Ck

`+1 := {i ∈ Ck
` : i ∪Qk satisfies Π};

8. A =
∑

i∈V |xi − yik| where yik = 1 if i ∈ V [Gk];
9. B = |x ∩ Ck

`+1|;
10. if A−B > M then
11. Qk := Qk \ r;
12. else
13. if A−B = M and B = 0 then
14. if |Qk| > |Q∗k| then
15. Q∗k := Qk;
16. Qk := Qk \ r
17. else
18. ` := `+ 1;
19. if A ≤M and |Qk| > |Q∗k| then
20. Q∗k := Qk

21. else
22. ` := `− 1;
23. if ` = −1 then
24. STOP
25. Qk := Qk \ r;
26. return P (x,Gk) := Q∗k
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The combinatorial first and second stage BnB algorithms described above were

coded using C++, and the CPLEX MIP solver was used for solving the problem 5.6

in its given form. The computations were ran the same platform as the numerical

experiments in previous chapters.

The computational performance of both solution techniques over all config-

urations of vertices, densities, scenarios and budgetary restrictions are reported in

Tables 5.1 – 5.4. Five instances of each configuration were generated and the cor-

responding solution times were averaged. A maximum solution time limit of 7200

seconds was imposed and the symbol “—” is used to indicate that the time limit was

exceeded. Further, if only a portion of the instances for a given graph configuration

solved within the time limit, then the number of instances that achieved a solution

are presented in parenthesis along with the corresponding average run time.

Table 5.1 summarizes the computational times with an assigned budget ofM =

d0.15|V |e and an edge density of d = 0.5. Observe that the BnB algorithm provides

one to two orders of magnitude in running time reductions for all configurations over

the CPLEX MIP solver. A similar trend is presented for budgetary considerations

in Table 5.2, where the same density is maintained, but the number of vertices is

fixed at |V | = 40. For the consecutive experiment, Table 5.3 demonstrates the effect

of variations in the average edge densities d for different graphs. Note that in this

case the BnB algorithm also provides an advantage for all the tested instance, except

that of d = 0.7. This aberration is due to the relative improvement in efficiency

of the CPLEX solver resulting from the decrease in the number of graph structural
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constraints (5.6b) (5.6c) associated with an increase in edge density. Lastly, the

effects of incremental increases in the number of scenarios N is presented in Table 5.4.

Clearly, the relative performance of the BnB algorithm improves as the number of

scenarios becomes larger.

Table 5.1: Average solution times (in seconds) for
problem (5.6) on random graphs with an edge den-
sity of 0.5, 20 scenarios, and M = 0.15.

|V | BnB CPLEX
20 0.05 2.44
25 0.15 6.08
30 0.57 33.01
35 2.39 135.34
40 5.66 374.21

Table 5.2: Average solution times (in seconds) for
problem (5.6) on random graphs with 40 vertices,
an edge density of 0.5 and 20 scenarios.

M BnB CPLEX
0.10 1.80 93.73
0.15 5.66 374.21
0.20 46.39 —
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Table 5.3: Average solution times (in seconds) for
problem (5.6) on random graphs with 40 vertices,
20 scenarios and M = 0.15.

d BnB CPLEX
0.1 0.02 3.09
0.3 0.42 714.15 (3)
0.5 5.66 374.21
0.7 245.67 82.49

Table 5.4: Average solution times (in seconds) on
random graphs with 40 vertices an edge density of
0.5, and M = 0.15.

N BnB CPLEX
5 1.61 7.09
10 2.97 50.78
15 4.08 105.65
20 5.66 374.21
25 6.57 449.39
30 8.28 628.51 (4)
35 8.29 867.04 (3)
40 9.77 —

5.5 Conclusion

We have introduced a new class of two-stage stochastic recourse maximum

Π problems for finding the maximum expected size of a graph among both decision

stages that satisfies a defined structural property Π. We address instances where

topological network uncertainties manifest in the form of connectivity disturbances

between decision time periods. Although the proposed model can admit a broad range
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of graph properties, we considered the case when property Π represents a hereditary

subgraph.

A combinatorial BnB algorithm exploiting the structure of two-stage recourse

problems was developed. We propose two decision-stage-specific algorithms and

demonstrate that ensuing reductions in computational times are achievable when the

property Π represents graph completeness. Numerical simulations on randomly gen-

erated graphs indicate that several orders of magnitude in solution time savings are

possible via the proposed BnB algorithm in comparison to an equivalent mathemat-

ical programming solver. Namely, for all the tested graph configurations other than

ones with an edge density of d = 0.7, one or more orders of magnitude in performance

improvements were witnessed. Future work will consider efficiency enhancements rel-

ative to search space bounding of the second stage problem solutions.
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CHAPTER 6
SUMMARY AND FUTURE WORK

The principal objective of this work is to model and develop efficient solution

techniques for graph theoretical problems with stochastic information that manifests

in a various forms. A stochastic programming framework that is based on the formal-

ism of coherent measures of risk was adopted in order to find minimum-risk structures

in graphs with stochastic vertex weights. The structural nature of such problems poses

several computational challenges. Namely, in many practical applications accurate

approximations of risk commonly demand very large representative scenario data sets.

To this end, we propose an efficient algorithm utilizing the notion that a significant

portion of representative scenarios that are used for quantifying risk are, in fact,

not required to obtain an optimal solution. A scenario scenario decomposition tech-

nique contingent on the identification and separation of “non-redundant” scenarios

by solving a series of smaller relaxation problems whose solution can be numerically

evaluated in the context of an original problem is developed. Particular emphasis is

placed on solving large-scale stochastic optimization problems involving HMCR and

LogExpCR measures of risk. Numerical experiments on portfolio optimization prob-

lems using simulated return data demonstrate that significant reductions in solution

times may be achieved by employing the introduced algorithm.

Another major computational challenge relates to the fact that problems of

finding a maximum (minimum) subset within a graph are generally not solvable in

polynomial time. Thus, the proposed risk-averse maximum weighted subgraph prob-
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lem class exhibits similar characteristics and merits graph-based solution methods

specifically tailored to exploiting the sought subgraph property. In this regard, we

introduce several branch-and-bound algorithms for solving R-MWS problems when

the subgraphs conform to hereditary and non-hereditary properties. As an illustrative

example of the two concepts a risk-averse maximum weighted clique problem and a

risk-averse maximum weighted 2-club problem were considered. In both cases, the

branch-and-bound algorithms provided significant reductions in running time over

the conventional optimization software solvers for the vast majority of graph config-

urations.

Conditions that admit topological modifications of networks in the form changes

in the structural integrity via the failure (or construction) of links between vertices

were also examined. One potential framework conforming to this notion entails a two-

stage stochastic recourse maximum Π problem that seeks to maximize the expected

cardinality of a subgraph satisfyting the heredity property Π under the assumption of

variations in network edges between decision stages. Namely, a subset of vertices com-

posing a Π-subgraph is select in the first stage, after which realizations of uncertainty

in the form of edge failures and creations arise. Then, the second stage recourse is

taken to “repair” the subset selected in the first stage by adding or removing vertices

in order to ascertain property Π in each graph structural scenario. A mathematical

programming framework the two-stage stochastic recourse maximum Π problem has

been suggested and a branch-and-bound algorithm utilizing the problem structure

was developed for each decision stage. Numerical simulations demonstrate that the
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technique can reduce solution times by several orders of magnitude in comparison to

an equivalent mathematical programming solver package.

It is our intention to further investigate the effectiveness of supplementing the

branch-and-bound algorithms described in Chapters 3–4 with the scenario decom-

position technique in Chapter 2 in order to evaluate the solution quality associated

with each node of the branch-and-bound tree more efficiently. Further, in the case

of non-hereditary risk-averse maximum weighted subgraph problems, it is also of in-

terest to investigate the impact of using different solution space elimination criterion

to address the additional computational expense associated with navigating between

levels of the branch-and-bound tree. In the case of the two-stage stochastic graph

recourse problems, future work will address efficiency considerations relative to search

space bounding of the second stage recourse problems via a combination of vertex

numbering methods and budgetary restrictions.
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